Vol. 90
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-03-05
Path Loss Measurement and Prediction in Outdoor Fruit Orchard for Wireless Sensor Network at 2.4 GHz Band
By
Progress In Electromagnetics Research C, Vol. 90, 237-252, 2019
Abstract
This work describes the path loss of radio propagation for wireless sensor network in the outdoor fruit orchard which is one of the common agriculture environments. The measurement was conducted in the jackfruit orchard in the 2.45 GHz band. Unlike other studies conducted in the fruit orchard environments, the variation of path loss over the relative angles between the plant rows and the line-of-sight direction from the transmitter to the receiver is identified. The equivalent vegetation obstruction model is proposed as the function of the equivalent number of trees along the line-of-sight to better represent the angular path loss variation. This leads to the proposal of the path loss prediction approach at any point in the fruit orchard by using a few measurement efforts. This work also introduces the Monte Carlo simulation using the numerical electromagnetic scattering computation called hybrid T-matrix method to evaluate the relative angular vegetation loss of a single tree that is used as the input to determine the equivalent number of trees. The evaluation results suggest that it can further reduce the measurement workload required for the proposed path loss prediction approach.
Citation
Tossaporn Srisooksai, Kamol Kaemarungsi, Junichi Takada, and Kentaro Saito, "Path Loss Measurement and Prediction in Outdoor Fruit Orchard for Wireless Sensor Network at 2.4 GHz Band," Progress In Electromagnetics Research C, Vol. 90, 237-252, 2019.
doi:10.2528/PIERC18111901
References

1. Bongiovanni, R. and J. Lowenberg-Deboer, "Precision agriculture and sustainability," Precision Agriculture, Vol. 5, No. 4, 359-387, Aug. 2004.
doi:10.1023/B:PRAG.0000040806.39604.aa

2. Ndzi, D. L., A. Harun, F. M. Ramli, M. L. Kamarudin, A. Zakaria, A. Y. M. Shakaff, M. N. Jaafar, S. Zhou, and R. S. Farook, "Wireless sensor network coverage measurement and planning in mixed crop farming," Computers and Electronics in Agriculture, Vol. 105, 83-94, 2014.
doi:10.1016/j.compag.2014.04.012

3. Savage, N., D. Ndzi, A. Seville, E. Vilar, and J. Austin, "Radio wave propagation through vegetation: Factors influencing signal attenuation," Radio Science, Vol. 38, No. 5, n/a-n/a, Oct. 2003.
doi:10.1029/2002RS002758

4. Joshi, G. G., C. B. Dietrich, C. R. Anderson, W. G. Newhall, W. A. Davis, J. Isaacs, and G. Barnett, "Near-ground channel measurements over line-of-sight and forested paths," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 152, No. 6, 589-596, Dec. 2005.
doi:10.1049/ip-map:20050013

5. Gay-Fernandez, J. A., M. Garcia S´anchez, I. Cuinas, A. V. Alejos, J. G. Sanchez, and J. L. Miranda- Sierra, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.
doi:10.2528/PIER10040806

6. Gay-Fernandez, J. A. and I. Cuinas, "Peer to peer wireless propagation measurements and path-loss modeling in vegetated environments," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3302-3311, Jun. 2013.
doi:10.1109/TAP.2013.2254452

7. Oestges, C., B. M. Villacieros, and D. Vanhoenacker-Janvier, "Radio channel characterization for moderate antenna heights in forest areas," IEEE Transactions on Vehicular Technology, Vol. 58, No. 8, 4031-4035, Oct. 2009.
doi:10.1109/TVT.2009.2024947

8. Gay-Fernandez, J. A. and I. Cuinas, "Short-term modeling in vegetation media at wireless network frequency bands," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3330-3337, Jun. 2014.
doi:10.1109/TAP.2014.2314459

9. ITU-R P.833-9 "Attenuation in vegetation,", Sep. 2016.

10. Srisooksai, T., K. Kaemarungsi, J. Takada, and K. Saito, "Radio propagation measurement and characterization in outdoor tall food grass agriculture field for wireless sensor network at 2.4GHz band," Progress In Electromagnetics Research C, Vol. 88, 43-58, 2018.

11. Ndzi, D. L., L. M. Kamarudin, A. A. Muhammad Ezanuddin, A. Zakaria, R. B. Ahmad, M. F. B. A. Malek, A. Y. M. Shakaff, and M. Jafaar, "Vegetation attenuation measurements and modeling in plantations for wireless sensor network planning," Progress In Electromagnetics Research B, Vol. 36, 283-301, 2012.
doi:10.2528/PIERB11091908

12. Balachander, D., T. R. Rao, and G. Mahesh, "RF propagation experiments in agricultural fields and gardens for wireless sensor communications," Progress In Electromagnetics Research C, Vol. 39, 103-118, 2013.
doi:10.2528/PIERC13030710

13. Hara, M., H. Shimasaki, Y. Kado, and M. Ichida, "Effect of Vegetation growth on radio wave propagation in 920-MHz band," IEICE Transactions on Communications, Vol. 99, No. 1, 81-86, 2016.
doi:10.1587/transcom.2015ISP0021

14. Co, P. J. and J. Takada, "Hybrid T-matrix modeling of electromagnetic scattering from simplified leaf structures," 2016 Progress In Electromagnetic Research Symposium (PIERS), 3210-3210, Shanghai, China, Aug. 8–11, 2016.

15. Co, P. J., "Spherical wave expansion approach to modeling the radio wave propagation effects of foliage,", Ph.D. dissertation, Tokyo Institute of Technology, Japan, Mar. 2018.

16., IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), IEEE Standard for Low-Rate Wireless Networks, IEEE2006, Apr. 2016.

17. Meng, Y. S. and Y. H. Lee, "Investigations of foliage effect on modern wireless communication systems: A review," Progress In Electromagnetics Research, Vol. 105, 313-332, 2010.
doi:10.2528/PIER10042605

18., COST 235 Management Committee, COST 235 Radiowave Propagation Effects on Nextgeneration Fixed-Services Terrestrial Telecommunications Systems, 1996.

19. Seville, A. and K. H. Craig, "Semi-empirical model for millimetre-wave vegetation attenuation rates," Electronics Letters, Vol. 31, No. 17, 1507-1508, Aug. 1995.
doi:10.1049/el:19951000

20. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

21. Harrington, R. F., "Field computation by moment methods," ser. IEEE Press series on Electromagnetic Waves, IEEE, Inc. [u.a.], New York, NY, 2000, oCLC: 255758693.

22. Johnson, R. and F. Schwering, "A transport theory of millimeter wave propagation in woods and forests," US Army, Comumunications-Electronics Command, Fort Monmouth, New Jersey, Tech. Rep. CECOM-TR-85-1, 1985.

23. Fernandes, T. R., R. F. Caldeirinha, M. Al-Nuaimi, and J. Richter, "A discrete RET model for millimeter-wave propagation in isolated tree formations," IEICE Transactions on Communications, Vol. E88-B, No. 6, 2411-2418, Jun. 2005.
doi:10.1093/ietcom/e88-b.6.2411

24. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proceedings of the IEEE, Vol. 53, No. 8, 805-812, Aug. 1965.
doi:10.1109/PROC.1965.4058

25. "Electromagnetic simulation software, Altair FEKO,", https://altairhyperworks.com, accessed May 25, 2018.
doi:10.1109/PROC.1965.4058

26. Naganawa, J., K. Haneda, M. Kim, T. Aoyagi, and J. Takada, "Antenna deembedding in FDTDbased radio propagation prediction by using spherical wave function," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2545-2557, Jun. 2015.
doi:10.1109/TAP.2015.2414442

27. Srisooksai, T., J. Takada, and K. Saito, "Portable wide-band channel sounder based software defined radio for studying the radio propagation in an outdoor environment," 2017 International Symposium on Antennas and Propagation (ISAP), 1-2, Oct. 2017.

28. Kaemarungsi, K., "Development and deployment of ZigBee wireless sensor networks for precision agriculture in sugarcane field," 33rd Asia-Pacific Advanced Network (APAN), Feb. 2012.

29. Homer Reid, M. T. and S. G. Johnson, "Efficient computation of power, force, and torque in BEM scattering calculations,", ArXiv e-prints, Jul. 2013.

30. "SCUFF-EM website,", accessed May 29, 2018, http://github.com/homerreid/scuff-EM.

31. Geuzaine, C. and J.-F. Remacle, "Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities," International Journal for Numerical Methods in Engineering, Vol. 79, No. 11, 1309-1331, Sep. 2009.
doi:10.1002/nme.2579

32. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd edition, Wiley, Hoboken, NJ, 2012.