Vol. 90
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-02-28
Evaluation and Minimization of Cramer-Rao Bound for Conformal Antenna Arrays with Directional Emitters for DOA-Estimation
By
Progress In Electromagnetics Research C, Vol. 90, 139-154, 2019
Abstract
The Cramer-Rao lower bound (CRLB) for calculating errors and accuracy of direction-of-arrival (DOA) estimation is discussed for a number of planar waves arriving on an antenna array. It is well known that the geometry of antenna arrays imposes restrictions on the performances of the direction-of-arrival estimation. In particular, the influence of the directivity factor of the individual antenna elements on the accuracy of the DOA estimation of the radio emission sources for circular (cylindrical), cubic and spherical antenna arrays consisting of the directional antenna elements is investigated. The directivity factor of antenna elements is changed within wide limits in order to determine the values at which the high accuracy of the direction-finding can be achieved. It is shown that further increasing the directivity factor of each antenna element makes the mean square error in the determination of the coordinates of the signals increase as well. The exact expression for the Cramer-Rao lower bound for the DOA-estimation variance calculation depending on the antenna directivity and the geometry is presented. The obtained exact equation shows the most important factors that the direction-of-arrival estimation accuracy is dependent on. A technique of obtaining antenna arrays with optimal directional elements locations is proposed. Those arrays allow increasing DOA estimation accuracy by several times.
Citation
Yuri Nechaev, Ilia Peshkov, and Natalia Fortunova, "Evaluation and Minimization of Cramer-Rao Bound for Conformal Antenna Arrays with Directional Emitters for DOA-Estimation," Progress In Electromagnetics Research C, Vol. 90, 139-154, 2019.
doi:10.2528/PIERC18111802
References

1. Chetan, R. D. and A. N. Jadhav, "Simulation study on DOA estimation using MUSIC algorithm," Intl. J. Tech. Eng. Sys., Vol. 2, No. 1, Mar. 2011.

2. Ikeda, K., J. Nagai, T. Fujita, H. Yamada, A. Hirata, and T. Ohira, "DOA estimation by using MUSIC algorithm with a 9-elements rectangular ESPAR antenna," Proc. of Intl. Symp. on Antennas and Propagat., 45-48, Aug. 2004.

3. Sun, C. and N. C. Karmakar, "Direction of arrival estimation based on a single port smart antenna using MUSIC algorithm with periodic signals," Intl. J. Signal Process., Vol. 1, No. 3, 153-162, 2010.

4. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat., Vol. 34, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

5. Belhoud, F. A., R. M. Shubair, and M. E. Al-Mualla, "Modelling and performance analysis of DOA estimation in adaptive signal processing arrays," Proc. IEEE Intl. Conf. on Electron., Circuits and Sys., 340-343, Dec. 2003.

6. Cadzow, J. A., "A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources," IEEE Trans. Acoust., Speech, Signal Process., Vol. 36, No. 7, 965-979, Jul. 1998.
doi:10.1109/29.1618

7. Abouda, A., H. M. El-Sallabi, and S. G. Haggman, "Impact of antenna array geometry on MIMO channel eigenvalues," Proc. IEEE Intl. Symp. on Personal, Indoor and Mobile Radio Comm., Vol. 1, 568-572, Sep. 2005.

8. Nechaev, Y. and I. Peshkov, "Building circular, octagonal, hexagonal and rectangular antenna arrays for direction-of-arrival via superresolutional method MUSIC," Radioengineering, No. 6, 137-142, 2016.

9. Wu, B., "Realization and simulation of DOA estimation using MUSIC algorithm with uniform circular arrays," The 4th Asia-Pacific Conf. on Environmental Electromagnetics, 908-912, 2006.

10. Nechaev, Yu. B. and I. V. Peshkov, "Evaluating Cramer-Rao Bound for 2D direction-finding via planar antenna arrays," Visn. NTUU KPI, Ser. Radioteh. Radioaparatobuduv., Vol. 67, 12-17, 2016.

11. Jackson, B. R., S. Rajan, B. J. Liao, and S. Wang, "Direction of arrival estimation using directive antennas in uniform circular arrays," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 736-747, 2015.
doi:10.1109/TAP.2014.2384044

12. Mohammadi, S., A. Ghani, and S. H. Sedighy, "Direction of arrival estimation in conformal microstrip patch array antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 511-515, 2018.
doi:10.1109/TAP.2017.2772085

13. Gazzah, H., J.-P. Delmas, and S. M. Jesus, "Direction-finding arrays of directional sensors for randomly located sources," IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, 1995-2003, 2016.
doi:10.1109/TAES.2016.150655

14. Gazzah, H. and S. Marcos, "Directive antenna arrays for 3D source localization," 4th IEEE Workshop on Signal Processing Advances in Wireless Communications, 2003. SPAWC 2003, 619-623, 2003.
doi:10.1109/SPAWC.2003.1319035

15. Chan, A. Y. J. and J. Litva, "MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array," IEE Proceedings — Radar, Sonar and Navigation, Vol. 142, No. 3, 105-114, 2018.
doi:10.1049/ip-rsn:19951756

16. Nechaev, Yu. B., E. Algazinov, and I. Peshkov, "Estimation of the cramer-rao bound for radio direction-finding on the azimuth and elevation of the cylindical antenna arrays," 41st International Conference on Telecommunications and Signal Processing (TSP), DOI: 10.1109/TSP.2018.8441419, 2018.

17. Moriya, H., et al. "Novel 3-D array configuration based on CRLB formulation for high-resolution DOA estimation," Proceedings of ISAP 2012, 1140-1143, Nagoya, Japan, 2012.