Vol. 91
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-03-07
Electromagnetic Wave Scattering from an Infinite Periodic Array of Hollow Conducting Circular Cylinders of Finite Length
By
Progress In Electromagnetics Research C, Vol. 91, 1-13, 2019
Abstract
An effective numerical technique is demonstrated for the plane wave scattering from an infinite periodic array of hollow circular cylinders of finite length. The cylinders are made of infinitely thin perfect conductor and allocated in the axial direction. We formulate the boundary value problem into a set of integral equations for the unknown electric current densities flowing in the circumferential and longitudinal directions. Employment of the Galerkin method allows us to solve simultaneous linear equations for the expansion coefficients of the unknown current, from which we can find the field distributions in both far and near regions. The procedure of analytical regularization makes the linear system into the Fredholm second kind that is contributory to stable and rapidly convergent results. Resonance is detected as abrupt changes in the total scattering cross sections for each grating mode, and it is accompanied by the formation of circular cavity mode pattern in the cylinder.
Citation
Hongchang An, and Akira Matsushima, "Electromagnetic Wave Scattering from an Infinite Periodic Array of Hollow Conducting Circular Cylinders of Finite Length," Progress In Electromagnetics Research C, Vol. 91, 1-13, 2019.
doi:10.2528/PIERC18111403
References

1. Williams, W. E., "Diffraction by a cylinder of finite length," Proc. Camb. Phil. Soc., Vol. 52, No. 2, 322-335, 1956.
doi:10.1017/S0305004100031303

2. Aoki, K., "Diffraction of plane electromagnetic waves from a conductive circular cylinder of finite length," J. IECE, Vol. 44, No. 9, 51-56, 1961 (in Japanese).

3. Kinoshita, T. and T. Sekiguchi, "Scattering of a plane electromagnetic wave by a conducting circular cylinder of finite length," Electron. Commun. Jpn. (Part I), Vol. 64, No. 5, 80-88, 1981.
doi:10.1002/ecja.4410640510

4. Kao, C. C., "Three-dimensional electromagnetic scattering from a circular tube of finite length," J. Appl. Phys., Vol. 40, No. 12, 4732-4740, 1969.
doi:10.1063/1.1657281

5. Medgyesi-Mitschang, L. N. and C. Eftimiu, "Scattering from wires and open circular cylinders of finite length using entire domain Galerkin expansions," IEEE Trans. Antennas Propag., Vol. 30, No. 4, 628-636, 1982.
doi:10.1109/TAP.1982.1142873

6. Davis, A. M. J. and R. W. Scharstein, "Electromagnetic plane wave excitation of an open-ended, finite-length conducting cylinder," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 2, 301-319, 1993.
doi:10.1163/156939393X00354

7. Lucido, M., M. D. Migliore, and D. Pinchera, "A new analytically regularizing method for the analysis of the scattering by a hollow finite-length PEC circular cylinder," Progress In Electromagnetics Research B, Vol. 70, 55-71, 2016.
doi:10.2528/PIERB16081404

8. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

9. Nosich, A. I., "Method of analytical regularization in computational photonics," Radio Sci., Vol. 51, No. 8, 1421-1430, 2016.
doi:10.1002/2016RS006044

10. Freni, A., C. Mias, and R. L. Ferrari, "Hybrid finite-element analysis of electromagnetic plane wave scattering from axially periodic cylindrical structures," IEEE Trans. Antennas Propagat., Vol. 46, No. 12, 1859-1866, 1998.
doi:10.1109/8.743824

11. Kishk, A. A., P.-S. Kildal, A. Monorchio, and G. Manara, "Asymptotic boundary condition for corrugated surfaces, and its application to scattering from circular cylinders with dielectric filled corrugations," IEE Proc. Microw. Antennas Propagat., Vol. 145, No. 1, 116-122, 1998.
doi:10.1049/ip-map:19981569

12. Kishk, A. A., "Electromagnetic scattering from transversely corrugated cylindrical structures using the asymptotic corrugated boundary conditions," IEEE Trans. Antennas Propagat., Vol. 52, No. 11, 3104-3108, 2004.
doi:10.1109/TAP.2004.835234

13. Dincer, F., M. Karaaslan, S. Colak, E. Tetik, O. Akgol, O. Altıntas, and C. Sabah, "Multiband polarization independent cylindrical metamaterial absorber and sensor application," Modern Physics Letters B, Vol. 30, No. 8, 1650095, 2016.
doi:10.1142/S0217984916500950

14. Bakir, M., M. Karaaslan, O. Akgol, O. Altıntas, E. Unal, and C. Sabah, "Sensory applications of resonator based metamaterial absorber," Optik, Vol. 168, 741-746, 2018.
doi:10.1016/j.ijleo.2018.05.002

15. Alkurt, F. O., O. Altıntas, A. Atci, M. Bakir, E. Unal, O. Akgol, K. Delihacioglu, M. Karaaslan, and C. Sabah, "Antenna-based microwave absorber for imaging in the frequencies of 1.8, 2.45, and 5.8GHz," Optical Engineering, Vol. 57, No. 11, 113102, 2018.
doi:10.1117/1.OE.57.11.113102

16. Agranovich, Z. S. and V. P. Shestopalov, "Distribution of electromagnetic waves in a circular waveguide," Soviet Phys. — Tech. Phys., Vol. 9, No. 11, 1504-1511, 1965.

17. Zinenko, T. L., A. Matsushima, and A. I. Nosich, "Surface-plasmon, grating-mode, and slab-mode Resonances in the H- and E-polarized THz wave scattering by a graphene strip grating embedded into a dielectric slab," IEEE J. Selected Topics in Quantum Electronics, Vol. 23, No. 4, 4601809, 2017.
doi:10.1109/JSTQE.2017.2684082

18. Matsushima, A. and T. Itakura, "Singular integral equation approach to electromagnetic scattering from a finite periodic array of conducting strips," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 6, 545-562, 1991.
doi:10.1163/156939391X00680

19. Matsushima, A. and T. Itakura, "Accurate numerical analysis of inductive windows in a rectangular waveguide by singular integral equations," Electron. Commun. Jpn. (Part I), Vol. 70, No. 6, 111-121, 1987.
doi:10.1002/ecja.4410700611

20. Mittra, R., T. Itoh, T. S. Li, and , "Analytical and numerical studies of the relative convergence phenomenon arising in the solution of an integral equation by the moment method," IEEE Trans. Microwave Theory Tech., Vol. 20, No. 2, 96-104, 1972.
doi:10.1109/TMTT.1972.1127691

21. Geng, N. and L. Carin, "Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium," IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 610-619, 1999.
doi:10.1109/8.768799

22. Amitay, N. and V. Galindo, "On energy conservation and the method of moments in scattering problems," IEEE Trans. Antennas Propagat., Vol. 17, No. 7, 747-751, 1969.
doi:10.1109/TAP.1969.1139549

23. Hessel, A. and A. A. Oliner, "A new theory of Wood’s anomalies on optical gratings," Applied Optics, Vol. 4, No. 10, 1275-1297, 1965.
doi:10.1364/AO.4.001275

24. Pozar, D. M., Microwave Engineering, 4th Edition, John Wiley & Sons, 2012.

25. Kundracik, F., M. Kocifaj, G. Videen, and J. Klaˇcka, "Effect of charged-particle surface excitations on near-field optics," Applied Optics, Vol. 54, No. 22, 6674-6681, 2015.
doi:10.1364/AO.54.006674

26. Klacka, J., M. Kocifaj, F. Kundracik, G. Videen, and I. Kohut, "Generalization of electromagnetic scattering by charged grains through incorporation of interband and intraband effects," Optics Letters, Vol. 40, No. 21, 5070-5073, 2015.
doi:10.1364/OL.40.005070

27. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets," IEEE Antennas Propag. Mag., Vol. 35, No. 6, 14-25, 1993.
doi:10.1109/74.248480

28. Ji, X., D. Sakomura, A. Matsushima, and T. Suyama, "Light scattering from two-dimensional periodic arrays of noble-metal disks and complementary circular apertures," Progress In Electromagnetics Research M, Vol. 43, 119-133, 2015.
doi:10.2528/PIERM15040201