Vol. 89
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-12-27
Modelling and Evaluation of Electrical Resonance Eddy Current for Submillimeter Defect Detection
By
Progress In Electromagnetics Research C, Vol. 89, 101-110, 2019
Abstract
Eddy current (EC) inspection is used extensively in non-destructive testing (NDT) to detect surface-breaking defects of engineering components. However, the sensitivity of conventional eddy current inspection has plateaued in recent years. The ability to detect submillimetre defects before it becomes critical would allow engineering components to remain in-service safely for longer. Typically, it is required that higher frequency EC is employed to achieve a suitable sensitivity for detection of such submillimetre defects. However, that would lead to significant electromagnetic noise affecting the sensitivity of the inspection. To overcome this issue, the electrical-resonance based eddy current method has been proposed, where the electrical enhanced resonance signal increases the contrast between signal and noise, thus improving the sensitivity of the defect detection. This work aims to investigate the electrical-resonance system via simulation technology using combination of fast numerical-based simulation and circuit approach. Leveraging on this model, the detection system can be optimized by performing parameters tuning. Investigation of both experiment and simulation develops a precise calibration model for submillimeter defects detection.
Citation
Yew Li Hor, Vinod Kumar Sivaraja, Yu Zhong, Viet Phuong Bui, and Christopher Lane, "Modelling and Evaluation of Electrical Resonance Eddy Current for Submillimeter Defect Detection," Progress In Electromagnetics Research C, Vol. 89, 101-110, 2019.
doi:10.2528/PIERC18102902
References

1. Blitz, J., Electrical and Magnetic Methods of Non-destructive Testing, 2nd Ed., Springer-Science+Business Media Dordrecht, 1997.
doi:10.1007/978-94-011-5818-3

2. Bowler, J. R., S. J. Norton, and D. J. Harrison, "Eddy-current interaction with an ideal crack I. The forward problem," J. of Appl. Phys., Vol. 75, 8138-8144, 1994.
doi:10.1063/1.356512

3. Sophian, A., G. Y. Tian, D. Taylor, and J. Rudlin, "Design of a pulsed eddy current sensor for detection of defects in aircraft lap-joints," Sensors and Actuators A: Physical, Vol. 101, No. 1-2, 92-98, 2002.
doi:10.1016/S0924-4247(02)00195-4

4. Ball, D. L., "The role of nondestructive testing in aircraft damage tolerance," Materials Evaluation, Vol. 61, No. 7, 814-818, 2003.

5. Hashizume, H., Y. Yamada, K. Miya, S. Toda, K. Morimoto, Y. Araki, K. Satake, and N. Shimizu, "Numerical and experimental analysis of eddy current testing for a tube with cracks," IEEE Trans. Magn., Vol. 28, 1469-1472, 1992.
doi:10.1109/20.123973

6. Thollon, F., B. Lebrun, N. Burais, and Y. Jayet, "Numerical and experimental study of eddy current probes in NDT of structures with deep flaws," NDT & E Int., Vol. 28, 97-102, 1995.
doi:10.1016/0963-8695(94)00010-H

7. Perrusson, G., P. Vafeas, and D. Lesselier, "Low–frequency dipolar excitation of a perfect ellipsoidal conductor," Quarterly of Applied Mathematics, Vol. 68, 513-536, 2010.
doi:10.1090/S0033-569X-2010-01171-5

8. Vafeas, P., P. K. Papadopoulos, and D. Lesselier, "Electromagnetic low–frequency dipolar excitation of two metal spheres in a conductive medium," Journal of Applied Mathematics, Vol. 2012, 1-37, 2012.
doi:10.1155/2012/628261

9. Bernieri, A., G. Betta, L. Ferrigno, and M. Laracca, "Crack depth estimation by using a multi-frequency ECT method," IEEE Trans. on Instrumentation and Measurement, Vol. 62, 3, 2013.
doi:10.1109/TIM.2013.2266034

10. Chady, T. and R. Sikora, "Optimization of eddy-current sensor for multifrequency systems," IEEE Trans. Magn., Vol. 39, 1313-1316, 2003.
doi:10.1109/TMAG.2003.810412

11. Yin, W., P. J. Withers, U. Sharma, and A. J. Peyton, "Non-contact characterisation of carbon-fibre-reinforced plastic using multi-frequency eddy-current sensors," IEEE Trans. on Instrumentation and Measurement, Vol. 62, No. 3, 2007.

12. Hughes, R. and S. Dixon, "Developments in near electrical resonance signal enhancement (NERSE) eddy-current methods," Progress in Quantitative NDE, Vol. 1650, 345-352l, 2015.

13. Hughes, R., Y. Fan, and S. Dixon, "Near electrical resonance signal enhancement (NERSE) in eddy-current crack detection," NDT & E International, Vol. 66, 82-89, 2014.
doi:10.1016/j.ndteint.2014.04.009

14. Kincaid, T. G. and M. V. K. Chari, "The application of finite element method analysis to eddy current NDE," Proceedings of the ARPA/AFML Review of Progress in Quantitative NDE, July 1977–June 1978.

15. Miorelli, R., C. Reboud, D. Lesselier, and T. Theodoulidis, "Eddy current modeling of narrow cracks in planar-layered metal structures," IEEE Trans. Magn., Vol. 48, No. 10, 2551-2559, 2012.
doi:10.1109/TMAG.2012.2197403

16. Bui, V. P., C. Lane, Y. L. Hor, Z. Yu, and C. E. Png, "Model-assisted NDT for sub-mm surface-breaking crack detection in alloys," 2017 XXXIInd URSI GASS, 1-4, 2017.

17. Burke, S. K., "Eddy-current inversion in the thin-skin limit: Determination of depth and opening for a long crack," J. of Appl. Phys., Vol. 75, 3072-3080, 1994.
doi:10.1063/1.358454

18. Aldrin, J. C., et al. "Model-based inverse methods for sizing cracks of varying shape and location in bolt-hole eddy current (BHEC) inspections," AIP Conference Proceedings, Vol. 1706, 090020, 2016.
doi:10.1063/1.4940557

19. Vafeas, P., A. Skarlatos, T. Theodoulidis, and D. Lesselier, "Semi-analytical method for the identification of inclusions by air-cored coil interaction in ferro-magnetic media," Mathematical Methods in the Applied Sciences, Vol. 41, 6422-6442, 2018.
doi:10.1002/mma.5168

20. Chew, W. C., "Waves and fields in inhomogeneous media," IEEE Press Series in Electromagnetic Waves, IEEE Press, 1995.

21. Cheney, W. and D. Kincaid, Numerical Mathematics and Computing, 4th Ed., 138-141, Brooks/Cole, 1999.

22. Hor, Y. L., Y. Zhong, V. P. Bui, and C. E. Png, "Electrical resonance eddy current sensor for submillimeter defect detection," Proc. SPIE, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure, 2017.

23. Miorelli, R., C. Reboud, T. Theodoulidis, N. Poulakis, and D. Lesselier, "Efficient modeling of ECT signal for realistic crack in layered half space," IEEE Trans. Magn., Vol. 49, No. 6, 2886-2892, 2013.
doi:10.1109/TMAG.2012.2236102