Vol. 91
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-03-21
Polarized Diversity Compact Planar MIMO Antenna for Wireless Access Point Applications
By
Progress In Electromagnetics Research C, Vol. 91, 115-127, 2019
Abstract
In this paper, a wideband polarization diversity multi-input multioutput (MIMO) antenna system is proposed. The structure of the proposed antenna consists of four wideband coplanar waveguide (CPW)-fed monopole antennas with a common ground plane and radiated element. The simulated and measured -10 dB impedance bandwidth is 20% (2.25-2.75 GHz), which covers WiFi (2.4 GHz) and LTE (2.6 GHz) frequency bands. The MIMO antenna system is applied to both an indoor and outdoor wireless access point (WAP) at the covered frequency bands. Due to the common structure of elements in the proposed MIMO antenna, an acceptable mutual coupling between the antennas ports is critical. Hence, a new parasitic element structure is presented to improve mutual coupling between the antenna ports. Acceptable values for the coupling coefficient (<-14 dB) are achieved by adding the parasitic element. The presented antenna system provides a nearly omnidirectional radiation pattern with an orthogonal mode of linear polarization. The results show a polarization diversity gain of 10 dB and an envelope correlation coefficient of less than 0.2. Moreover, each antenna port possesses peak gains of 5.33-6.97 dBi and efficiencies of 51.5-57%. A comparison between the simulation results and experimental measurements reveals good agreement between the two, confirming the validity of the proposed design.
Citation
Alireza Moradi, Razali Ngah, and Mohsen Khalily, "Polarized Diversity Compact Planar MIMO Antenna for Wireless Access Point Applications," Progress In Electromagnetics Research C, Vol. 91, 115-127, 2019.
doi:10.2528/PIERC18101905
References

1. Ban, Y.-L., et al. "4G/5G multiple antennas for future multi-mode smartphone application," IEEE Access, Vol. 4, 2981-2988, 2016.
doi:10.1109/ACCESS.2016.2582786

2. Wang, C.-J. and C.-M. Lin, "A CPW-fed open-slot antenna for multiple wireless communication systems," IEEE Antennas Wireless Propag. Lett., Vol. 11, 620-623, 2012.
doi:10.1109/LAWP.2012.2203289

3. Liu, W.-C., "Broadband dual frequency meandered CPW-fed monopole antenna," Electron Lett., Vol. 40, 1319-1320, 2004.
doi:10.1049/el:20045952

4. Lu, W.-C., "Broadband dual frequency cross-shaped slot CPW-fed monopole antenna for WLAN operation," Microwave Opt. Tech. Lett., Vol. 46, 353-355, 2005.
doi:10.1002/mop.20985

5. Moradi Kordalivand, A., T.-A. Rahman, and M. Khalily, "Common elements wideband MIMO antenna system for WiFi/LTE access-point applications," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1601-1604, 2014.
doi:10.1109/LAWP.2014.2347897

6. Pan, Y., et al. "Evaluation of dual-polarised triple-band multibeam MIMO antennas for WLAN/WiMAX application," IET Microwaves, Antennas & Propagation, Vol. 11, 1469-1475, 2017.
doi:10.1049/iet-map.2016.1101

7. Chen, S.-C. and C.-S. Fu, "Switchable long-term evolution/ wireless wide area network/ wireless local area network multiple-input and multiple-output antenna system for laptop computer," IEEE Access, Vol. 5, 9857-9865, 2017.
doi:10.1109/ACCESS.2017.2705739

8. Li, J.-F., Q.-X. Chu, and T.-G. Huang, "A compact wideband MIMO antenna with two novel bent slits," IEEE Trans. Antennas Propagat., Vol. 60, No. 2, 482-489, Feb. 2012.
doi:10.1109/TAP.2011.2173452

9. Sonkki, M., E. Antonino-Daviu, M. Cabedo-Fabres, M. Ferrando-Bataller, and E. T. Salonen, "Improved planar wideband antenna element and its usage in a mobile MIMO system," IEEE Antennas Wireless Propag. Lett., Vol. 11, 826-829, 2012.
doi:10.1109/LAWP.2012.2208615

10. WiMAX Broadband Wireless Access, Wi-fiplanet.com, retrieved Mar. 2008.

11. Li, R. L., X. L. Quan, Y. H. Cui, and M. M. Tentzeri, "Directional triple-band planar antenna for WLAN/WiMax access points," Electron Lett., Vol. 48, No. 6, 2012.
doi:10.1049/el.2011.3448

12. Su, S.-W., "High-gain dual-loop antennas for MIMO access points in the 2.4/5.2/5.8 GHz bands," IEEE Antennas Wireless Propag. Lett., Vol. 58, No. 7, 2412-2419, 2010.
doi:10.1109/TAP.2010.2048871

13. Medeiros, C. R., E. B. Lima, J. R. Costa, and C. A. Fernandes, "Wideband slot antenna for WLAN access points," IEEE Antennas Wireless Propag. Lett., Vol. 9, 79-82, 2010.
doi:10.1109/LAWP.2010.2043332

14. Fernandez, S. C. and S. K. Sharma, "Multiband printed meandered loop antennas with MIMO implementations for wireless routers," IEEE Antennas Wireless Propag. Lett., Vol. 12, 96-99, 2013.
doi:10.1109/LAWP.2013.2243104

15. Moradi, A., T.-A. Rahman, C. Y. Leow, and S. Ebrahimi, "Dual-polarized MIMO antenna system for WiFi and LTE wireless access point application," Int. J. Commun. Syst., Vol. 30, 2017.

16. Kim, S. J., H. S. Lee, and Y.-S. Kim, "A CPW-fed staircase monopole UWB antenna with bandnotched frequency in the WLAN band," Microw. Opt. Technol. Lett., Vol. 49, No. 10, 2545-2547, 2007.
doi:10.1002/mop.22775

17. Azarmanesh, M., S. Soltani, and P. Lotfi, "Design of an ultra-wideband monopole antenna with WiMAX, C and wireless local area network band notches," IET Microw. Antennas Propag., Vol. 5, No. 6, 728-733, 2011.
doi:10.1049/iet-map.2010.0148

18. Zaker, R. and A. Abdipour, "A very compact ultrawideband printed omnidirectional monopole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 9, 471-473, 2010.
doi:10.1109/LAWP.2010.2050852

19. Kim, K.-H., Y.-J. Cho, S.-H. Hwang, and S.-O. Park, "Band-notched UWB planar monopole antenna with two parasitic patches," Electron Lett., Vol. 41, No. 14, 2005.
doi:10.1049/el:20051090

20. Zhou, X., X.-L. Quan, and R.-L. Li, "Dual-band WLAN diversity antenna system with high portto- port isolation," IEEE Antennas Wireless Propag. Lett., Vol. 11, 244-247, 2012.

21. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with EBG structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propagat., Vol. 51, 2936-2946, Oct. 2003.

22. Ayatollahi, M., Q. Rao, and D. Wang, "A compact, high isolation and wide bandwidth antenna array for long term evolution wireless devices," IEEE Trans. Antennas Propagat., Vol. 60, No. 10, 4960-4963, Oct. 2012.
doi:10.1109/TAP.2012.2207312

23. Li, J.-F., Q.-X. Chu, Z.-H. Li, and X.-X. Xia, "Compact dual band-notched UWB MIMO antenna with high isolation," IEEE Trans. Antennas Propagat., Vol. 61, No. 9, 4759-4766, Sep. 2013.
doi:10.1109/TAP.2013.2267653

24. Colburn, J. S., Y. Rahmat-Samii, M. A. Jensen, and G. J. Pottie, "Evaluation of personal communications dual-antenna handset diversity performance," IEEE Trans. Antennas Propagat., Vol. 47, No. 3, 737-746, Aug. 1998.