Vol. 89
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-01-03
Near Infrared Supercontinuum Generation in Silica Based Photonic Crystal Fiber
By
Progress In Electromagnetics Research C, Vol. 89, 149-159, 2019
Abstract
This research explores a silica based highly nonlinear photonic crystal fiber of near infrared window; solid silica core photonic crystal fiber is suitable for propagating light towards the near-infrared wavelength region. Full vector finite difference method is used for numerical simulation, by solving the generalized nonlinear Schrödinger equation with the split-step Fourier method to show that the design exhibits high nonlinear coefficient, near zero ultra-flattened dispersion, low dispersion slope and very low confinement losses. It is demonstrated that it is possible to generate high power wide supercontinuum spectrum using 2.5 ps input pulses at 1.06 μm, 1.30 μm and 1.55 μm center wavelengths. It is observed that supercontinuum spectrum is broadened from 960 nm to 1890 nm by considering center wavelengths of 1.06 μm, 1.31 μm, and 1.55 μm into silica based index guiding highly nonlinear photonic crystal fiber. Furthermore, immensely short fiber length of 1 m at center wavelengths of 1.06 μm, 1.31 μm and 1.55 μm is possible using the proposed highly nonlinear photonic crystal fiber. The generated high power wide supercontinuum spectrum is applicable as a laser light source in near infrared band.
Citation
Feroza Begum, and Pg Emeroylariffion Abas, "Near Infrared Supercontinuum Generation in Silica Based Photonic Crystal Fiber," Progress In Electromagnetics Research C, Vol. 89, 149-159, 2019.
doi:10.2528/PIERC18100102
References

1. Knight, J. C., "Photonic crystal fibres," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940

2. Knight, J. C., T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Optics Letters, Vol. 21, No. 19, 1547-1549, 1996.
doi:10.1364/OL.21.001547

3. Begum, F., Y. Namihira, S. M. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, "Design and analysis of novel highly nonlinear hexagonal photonic crystal fibers with ultra-flattened chromatic dispersion," Optics Communications, Vol. 282, No. 7, 1416-1421, 2009.
doi:10.1016/j.optcom.2008.12.005

4. Begum, F., Y. Namihira, T. Kinjo, and S. Kaijage, "Supercontinuum generation in photonic crystal fibers at 1.06 μm, 1.31 μm and 1.55 μm wavelengths," Electronics Letters, Vol. 46, No. 22, 1518-1520, 2010.
doi:10.1049/el.2010.2133

5. Colston, Jr., B. W., U. S. Sathyam, L. B. DaSilva, M. J. Everett, P. Stroeve, and L. L. Otis, "Dental OCT," Opt. Express, Vol. 3, No. 6, 230-238, 1998.
doi:10.1364/OE.3.000230

6. Namihira, Y., J. Liu, T. Koga, F. Begum, M. A. Hossain, N. Zou, S. F. Kaijage, Y. Hirako, H. Higa, and M. A. Islam, "Design of highly nonlinear octagonal photonic crystal fiber with near-zero flattened dispersion in 1.31 μm Waveband," Optical Review, Vol. 18, No. 6, 436-440, 2011.
doi:10.1007/s10043-011-0082-3

7. Izatt, J. A. and M. A. Choma, Optical Coherence Tomography, 47-72, Professor Dr. Wolfgang Drexler, Professor Dr. James G. Fujimoto, ed., Springer Publisher, 2008.

8. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express, Vol. 12, No. 10, 843-852, 2004.
doi:10.1364/OPEX.12.002027

9. Shibata, H., N. Ozaki, T. Yasuda, S. Ohkouchi, N. Ikeda, H. Ohsato, E. Watanabe, Y. Sugimoto, K. Furuki, K. Miyaji, and R. A. Hogg, "Imaging of spectral-domain optical coherence tomography using a superluminescent diode based on InAs quantum dots emitting broadband spectrum with Gaussian-like shape," Japanese Jour. of Appl. Phys., Vol. 54, 04DG07-1-04DG07-5, 2015.

10. Calmano, T., J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, "Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing," Appl. Phys. B, Vol. 100, 131-135, 2010.
doi:10.1007/s00340-010-3929-6

11. Zaytsev, A., C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Opt. Express, Vol. 21, No. 13, 16056-16062, 2013.
doi:10.1364/OE.21.016056

12. Aguirre, A. D., N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express, Vol. 14, No. 3, 1145-1160, 2006.
doi:10.1364/OE.14.001145

13. Louot, C., B. M. Shalaby, E. Capitaine, S. Hilaire, P. Leproux, D. Pagnoux, and V. Couderc, "Supercontinuum Generation in an Ytterbium-Doped Photonic Crystal Fiber for CARS Spectroscopy," IEEE Photonics Technol. Letters, Vol. 28, No. 19, 2011-2014, 2016.
doi:10.1109/LPT.2016.2578721

14. Raj, G. J., R. V. J. Raja, N. Nagarajan, and G. Ramanathan, "Tunable broadband spectrum under the influence of temperature in IR region using CS2 core photonic crystal fiber," Journal of Lightwave Technol., Vol. 34, No. 15, 3503-3509, 2016.
doi:10.1109/JLT.2016.2571119

15. Jain, D., R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, "Record power, ultrabroadband supercontinuum source based on highly GeO2 doped silica fiber," Opt. Express, Vol. 24, No. 23, 26667-26677, 2016.
doi:10.1364/OE.24.026667

16. Porcel, M. A. G., F. Schepers, J. P. Epping, T. Hellwig, M. Hoekman, R. G. Heideman, P. J. M. V. D. Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, C. Fallnich, and K.-J. Boller, "Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths," Opt. Express, Vol. 25, No. 2, 1542-1554, 2017.
doi:10.1364/OE.25.001542

17. Tarnowski, K., T. Martynkien, P. Mergo, K. Poturaj, G. Sobon, and W. Urbanczyk, "Coherent supercontinuum generation up to 2.2 μm in an all-normal dispersion microstructured silica fiber," Opt. Express, Vol. 24, No. 26, 30523-30536, 2016.
doi:10.1364/OE.24.030523

18. Ali, R. A. H., M. F. O. Hameed, and S. S. A. Obayya, "Ultrabroadband supercontinumm generation through photonic crystal fiber with As2S3 chalcogenide core," J. Lightwave Techn., Vol. 34, No. 23, 5423-5430, 2016.
doi:10.1109/JLT.2016.2615044

19. Yang, L., B. Zhange, K. Yin, J. Yao, G. Liu, and J. Hou, "0.6–3.2 μm supercontinuum generation in a step-index germanium-core fiber using a 4.4 kW peak-power pump laser," Opt. Express, Vol. 24, No. 12, 12600-12606, 2016.
doi:10.1364/OE.24.012600

20. Namihira, Y., M. A. Hossain, T. Koga, M. A. Islam, S. M. A. Razzak, S. F. Kaijage, Y. Hirako, and H. Higa, "Design of highly nonlinear dispersion flattened hexagonal photonic crystal fibers for dental optical coherence tomography applications," Opt. Review, Vol. 19, No. 2, 78-81, 2012.
doi:10.1007/s10043-012-0016-8

21. Karim, M. R., H. Ahmad, and B. M. A. Rahman, "All-normal dispersion chalcogenide PCF for ultraflat mid-infrared supercontinuum generation," IEEE Photonics Technology Letters, Vol. 29, No. 21, 1792-1795, 2017.
doi:10.1109/LPT.2017.2752214

22. Ahmad, H., M. R. Karim, and B. M. A. Rahman, "Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime," Applied Physics B, Vol. 124, No. 3, Article 47, 2018.

23. Guo, Z., J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, "Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 48, 67-76, 2016.
doi:10.2528/PIERM15122302

24. Begum, F., Y. Namihira, T. Kinjo, and S. Kaijage, "Broadband supercontinuum spectrum generated highly nonlinear photonic crystal fiber applicable to medical and optical communication systems," Japanese Journal of Applied Physics, Vol. 50, 092502-092507, 2011.
doi:10.7567/JJAP.50.092502

25. Begum, F. and Y. Namihira, "Design of supercontinuum generating photonic crystal fiber at 1.06, 1.31 and 1.55 μm wavelengths for medical imaging and optical transmission systems," Natural Science, Vol. 3, No. 5, 401-407, 2011.
doi:10.4236/ns.2011.35054

26. Mohamed, L. F., C. Lynda, and H. Issam, "Supercontinuum generation in silica photonic crystal fiber at 1.3 μm and 1.65 μm wavelengths for optical coherence tomography," Optik, Vol. 152, No. 1, 106-115, 2018.

27. Poletti, F., V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express, Vol. 13, No. 10, 3728-3736, 2005.
doi:10.1364/OPEX.13.003728

28. Shen, L.-P., W.-P. Huang, and S.-S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightw. Technol., Vol. 21, No. 7, 1644-1651, 2003.
doi:10.1109/JLT.2003.814397

29. Zhu, Z. and T. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express, Vol. 10, No. 17, 853-864, 2002.
doi:10.1364/OE.10.000853

30. Guo, S., F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express, Vol. 12, No. 15, 3341-3352, 2004.
doi:10.1364/OPEX.12.003341

31. Begum, F., Y. Namihira, S. M. A. Razzak, and N. Zou, "Novel Square photonic crystal fibers with ultra-flattened chromatic dispersion and low confinement losses," IEICE Transaction on Electronics, Vol. E90-C, No. 3, 607-612, 2007.
doi:10.1093/ietele/e90-c.3.607

32. Bjarklev, A., J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, Kluwer Academic Publishers, 2003.
doi:10.1007/978-1-4615-0475-7

33. Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor (eds.), Cambridge University Press, 2010.

34. Sellmier, W., "Zur Erklärung der abnormen Farbenfolge im Spektrum einiger Substanzen," Annalen der Physik, Vol. 219, No. 6, 272-282, 1871.
doi:10.1002/andp.18712190612