1. Chan, V. and A. Perlas, "Basics of ultrasound imaging," Atlas of Ultrasound-Guided Procedures in Interventional Pain Management, 13-19, Springer New York, 2011.
2. Fink, M. and M. Tanter, "Multiwave imaging and super resolution," Phys. Today, Vol. 63, 28-33, 2010, 10.1063/1.3326986.
doi:10.1063/1.3326986
3. Bowen, T., "Radiation-induced thermoacoustic soft tissue imaging," 1981 Ultrasonics Symposium, 817-822, Chicago, IL, USA, 1981.
4. Bowen, T., R. L. Nasoni, A. E. Pifer, and G. H. Sembroski, "Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials," 1981 Ultrasonics Symposium, 823-827, Chicago, IL, USA, 1981.
5. Kruger, R. A., K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, "Thermoacoustic CT with radio waves: A medical imaging paradigm," Radiology, Vol. 211, 275-278, 1999.
doi:10.1148/radiology.211.1.r99ap05275
6. Mashal, A., J. H. Booske, and S. C. Hagness, "Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: An experimental study of the effects of microbubbles simple thermosacoustic targets," Phys. Med. Biol., Vol. 54, 641-650, 2009.
doi:10.1088/0031-9155/54/3/011
7. Deng, Y. and M. Golkowski, "Innovative biomagnetic imaging sensors for breast cancer: A modelbased study," J. Appl. Phys., Vol. 111, 07B323, 2012.
doi:10.1063/1.3676430
8. Xu, M., G. Ku, X. Jin, L. V. Wang, B. D. Fornage, and K. K. Hunt, "Breast cancer imaging by microwave-induced thermoacoustic tomography," Proc. SPIE 5697, Photons Plus Ultrasound: Imaging and Sensing 2005: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, Vol. 45, May 05, 2005.
9. Chen, G. P., et al. "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, 11-12, 1565–1574, 2008.
10. Ammari, H., et al. "Quantitative thermo-acoustic imaging: An exact reconstruction formula," Journal of Differential Equations, Vol. 254, No. 3, 1375-1395, 2013.
doi:10.1016/j.jde.2012.10.019
11. Xu, Y., M. Xu, and L. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography. II. Cylindrical geometry," IEEE Transactions on Medical Imaging, Vol. 21, No. 7, 829-833, 2002.
doi:10.1109/TMI.2002.801171
12. Xu, Y., D. Feng, and L. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry," IEEE Transactions on Medical Imaging, Vol. 21, No. 7, 823-828, 2002.
doi:10.1109/TMI.2002.801172
13. Xie, Y., B. Guo, J. Li, G. Ku, and L. V Wang, "Adaptive and robust methods of reconstruction,", Vol. 55, No. 12, 2741-2752, 2008.
14. Eckhart, A. T., R. T. Balmer, W. A. See, and S. K. Patch, "Ex vivo thermoacoustic imaging over large fields of view with 108 MHz irradiation," IEEE Trans. Biomed. Eng., Vol. 58, No. 8, 2238-2246, 2011.
doi:10.1109/TBME.2011.2128319
15. Wang, X., D. Bauer, R. Witte, and H. Xin, "Microwave-induced thermoacoustic imaging model for potential breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 06, No. 01, 1350001, 2012.
16. Zhu, X., Z. Zhao, J. Wang, G. Chen, and Q. H. Liu, "Active adjoint modeling method in microwave induced thermoacoustic tomography for breast tumor," IEEE Trans. Biomed. Eng., Vol. 61, No. 7, 1957-1966, 2014.
doi:10.1109/TBME.2014.2309912
17. Song, J., et al., "Evaluation of contrast enhancement by carbon nanotubes for microwave-induced thermoacoustic tomography," IEEE Trans. Biomed. Eng., Vol. 62, No. 3, 930-938, 2015.
doi:10.1109/TBME.2014.2373397
18. Lou, C., S. Yang, Z. Ji, Q. Chen, and D. Xing, "Ultrashort microwave-induced thermoacoustic imaging: A breakthrough in excitation efficiency and spatial resolution," Phys. Rev. Lett., Vol. 109, No. 21, 15, 2012.
doi:10.1103/PhysRevLett.109.218101
19. Razansky, D., S. Kellnberger, and V. Ntziachristos, "Near-field radiofrequency thermoacoustic tomography with impulse excitation," Med. Phys., Vol. 37, No. 9, 4602-4607, 2010.
doi:10.1118/1.3467756
20. Nan, H. and A. Arbabian, "Peak-power-limited frequency-domain microwave-induced thermoacoustic imaging for handheld diagnostic and screening tools," IEEE Trans. Microw. Theory Tech., Vol. 110, 2017.
21. Wang, K. and M. A. Anastasio, "Photoacoustic and thermoacoustic tomography: Image formation principles," Handbook of Mathematical Methods in Imaging, O. Scherzer (ed.), 2011.
22., COMSOL Multiphysics v. 5.2, www.comsol.com. COMSOL AB, Stockholm, Sweden.
23. Maxwell, E., "Conductivity of Metallic Surfaces at Microwave Frequencies," Journal of Applied Physics, Vol. 18, No. 7, 629-638, 1947.
doi:10.1063/1.1697818
24. Hristova, Y., P. Kuchment, and L. Nguyen, "Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media," Inverse Probl., Vol. 24, No. 5, 55006, 2008.
doi:10.1088/0266-5611/24/5/055006
25. Chen, G., Z. Zhao, Z. Nie, and Q. H. Liu, "Computational study of time reversal mirror technique for microwave-induced thermo-acoustic tomography," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2191-2204, 2008.
doi:10.1163/156939308787522555
26. Treeby, B. E. and B. T. Cox, "k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields," J. Biomed. Opt., Vol. 15, No. 2, 021314, 2010.
doi:10.1117/1.3360308
27. Kuchment, P. and L. Kunyansky, "Mathematics of photoacoustic and thermoacoustic tomography," Handbook of Mathematical Methods in Imaging, 881-865, 2011.
28. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001