Vol. 90
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-01-10
Design and Manufacturing of a Novel Compact 2.4 GHz LPF Using a DGS-DMS Combination and Quasi Octagonal Resonators for Radar and GPS Applications
By
Progress In Electromagnetics Research C, Vol. 90, 15-28, 2019
Abstract
In this paper, a new compact microstrip low-pass filter (LPF) with ultra-wide stopband characteristics is presented. The combinations of DGS-DMS along with quasi octagonal resonators are employed in the design of the proposed filter to achieve compact size and ultra-wide stopband suppression level. The proposed filter has been designed, simulated, optimized and tested. The design procedure is validated using the commercial full-wave EM MoM simulator Microwave Office. Simulated as well as measured results of low-pass filter exhibit sharp roll-off (ξ) of 19 dB/GHz and creating transmission zero at around 7.8 GHz with attenuation level -54 dB. The measurement results show good agreement with the simulations. The cutoff frequency of the proposed low-pass filter is 2.4 GHz with the insertion loss less than 0.3 dB. The ultra wide stop band with over 20 dB attenuation extended from 3.42 GHz to 12 GHz. The spurious passband suppression up to six harmonics (5fc) is achieved for the proposed design. The addition of two parasitics DGS elements in the ground plane leads to suppression of the undesired harmonics and thus to improve the stopband. The size of the whole structure is less as (0.44λgx0.26λg) with λg = 68 mm. The proposed filter is useful for microwave L band, GPS system, and RADAR applications.
Citation
Ahmed Boutejdar, Mouloud Challal, Sudipta Das, and Soumia El Hani, "Design and Manufacturing of a Novel Compact 2.4 GHz LPF Using a DGS-DMS Combination and Quasi Octagonal Resonators for Radar and GPS Applications," Progress In Electromagnetics Research C, Vol. 90, 15-28, 2019.
doi:10.2528/PIERC18092107
References

1. Auob, A. and L. Ali, "Compact lowpass filter with wide stop-band using open stubs loaded spiral microstrip resonant cell," Aces Journal, Vol. 16, 27-34, Jan. 2013.

2. Li, L. and Z.-F. Li, "Compact quasi-elliptic low pass filter using symmetric rectangular coupled capacitors," Electron. Lett., Vol. 44, No. 2, 124-125, Jan. 2008.
doi:10.1049/el:20082877

3. He, Q. and C. Liu, "A novel low-pass filter with an embedded band-stop structure for improved stopband characteristics," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 10, 629-631, Oct. 2009.

4. Raphika, P. M., P. Abdulla, and P. M. Jasmine, "Compact low pass filter with a sharp roll-off using patch resonators," Microwave and Optical Technology Letters, Vol. 56, No. 11, 2534-2536, 2014.
doi:10.1002/mop.28644

5. Velidi, V. and S. Sanyal, "Sharp roll-off low pass filter with wide stopband using stub-loaded coupled line hairpin unit," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 6, 301-303, 2011.
doi:10.1109/LMWC.2011.2132120

6. Chen, X., L. Zhang, Y. Peng, Y. Leng, H. Lu, and Z. Zheng, "Compact lowpass filter with wide stop band bandwidth," Microwave and Optical Technology Letters, Vol. 57, No. 2, 367-371, 2015.
doi:10.1002/mop.28853

7. Packiaraj, D., K. J. Vinoy, M. Ramesh, and A. T. Kalghatgi, "Design of compact low pass filter with wide stop band using tri-section stepped impedance resonator," Int. J. Electron. Commun. (AEÜ), Vol. 65, 1012-1014, 2011.
doi:10.1016/j.aeue.2011.03.018

8. Wang, L., H.-C. Yang, and Y. Li, "Design of compact microstrip low-pass filter with ultra-wide stopband using SIRs," Progress In Electromagnetics Research Letters, Vol. 18, 179-186, 2010.
doi:10.2528/PIERL10091201

9. Cao, H., W. Guan, S. He, and L. Yang, "Compact lowpass filter with high selectivity using G-shaped defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 33, 55-62, 2012.
doi:10.2528/PIERL12051412

10. Boutejdar, A., A. Elsherbini, and A. S. Omar, "A compact microstrip multi-layer lowpass filter using triangle slots etched in the ground plane," 36th European Microwave Conference, 2006, 271-274, 2006.
doi:10.1109/EUMC.2006.281290

11. Balalem, A., A. R. Ali, J. Machac, and A. Omar, "Quasi-elliptic microstrip low-pass filters using an interdigital DGS slot," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 8, 586-588, Aug. 2007.
doi:10.1109/LMWC.2007.901769

12. Chen, X.-Q., R. Li, S.-J. Shi, Q. Wang, L. Xu, and X.-W. Shi, "A novel low pass filter using elliptic shape defected ground structure," Progress In Electromagnetics Research B, Vol. 9, 117-126, 2008.
doi:10.2528/PIERB08071801

13. Hayati, M. and A. Lotfi, "Elliptic function low pass filter with sharp cutoff frequency using slit loaded tapered compact microstrip resonator cell," IET Electronics Letters, Vol. 46, No. 2, 143-144, 2010.
doi:10.1049/el.2010.3136

14. Boutejdar, A. and W. A. E. Ali, "Improvement of compactness of low pass filter using new Quasi-Yagi-DGS-resonator and multilayer-technique," Progress In Electromagnetics Research C, Vol. 69, 115-124, 2016.
doi:10.2528/PIERC16073003

15. Boutejdar, A., A. A. Ibrahim, and E. P. Burte, "Design of a novel ultra wide stop band low pass filter using a DMS-DGS technique for radar applications," International Journal of Microwave Science and Technology, 1-7, 2015.
doi:10.1155/2015/101602

16. Boutejdar, A., M. Makkey, A. Elsherbini, and A. Omar, "Design of compact stop band extended microstrip low pass filters by employing mutual coupled square-shaped defected ground structures," Microwave and Optical Technology Letters, Vol. 50, 1107-1111, 2008.
doi:10.1002/mop.23273

17. Boutejdar, A., A. Ramadan, M. Makkey, and A. S. Omar, "Design of compact microstrip low pass filters using a U-shaped defected ground structure and compensated microstrip line," Proceedings of the 36th European Microwave Conference, 267-270, Manchester, UK, Sep. 2006.

18. Boutejdar, A., A. Elsherbini, and A. S. Omar, "Method for widening the reject-band in low-pass/band-pass filters by employing coupled C-shaped defected ground structure," IET Microw. Antennas Propag., Vol. 2, No. 8, 759-765, 2008.
doi:10.1049/iet-map:20070270

19. Mohra, A. S. S., "Compact lowpass filter with sharp transition band based on defected ground structures," Progress In Electromagnetics Research Letters, Vol. 8, 83-92, 2009.
doi:10.2528/PIERL09041406

20. Boutejdar, A., "Design of compact reconfigurable broadband band-stop filter based on a low-pass filter using half circle DGS resonator and multi-layer technique," Progress In Electromagnetics Research C, Vol. 71, 91-100, 2017.
doi:10.2528/PIERC16102307

21. Boutejdar, A., et al. "Design of a novel ultrawide stopband lowpass filter using a DMS-DGS technique for radar applications," International Journal of Microwave Science and Technology, Vol. 6, 1-7, 2015.
doi:10.1155/2015/101602

22. Challal, M., A. Boutejdar, M. Dehmas, A. Azrar, and A. Omar, "Compact microstrip low-pass filter design with ultra-wide reject band using a novel quarter-circle DGS shape," Appl. Comp. Electro. Society (ACES) Journal, Vol. 27, No. 10, 808-815, Oct. 2012.

23. Boutejdar, A., A. Omar, and E. Burte, "LPF builds on Quasi-Yagi DGS," Microwaves & RF, Vol. 52, 72-77, 2013.

24. Ting, S. W., K. W. Tam, and R. P. Martins, "Miniaturized microstrip low pass filter with wide stop-band using double equilateral U-shaped defected ground structure," IEEE Microw. Wireless Compon. Lett., Vol. 16, 240-242, May 2006.
doi:10.1109/LMWC.2006.873592

25. Boutejdar, A., "Design of a very compact U-HI-LO low-pass filter using meander technique and quasi horn inductors for L-band and C-band applications," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2897-290, 2016.
doi:10.1002/mop.30173

26. Peng, L., et al. "A low-pass filter with sharp transition and wide stop-band designed based on new metamaterial transmission line," Applied Computational Electromagnetics Society Journal, Vol. 31, No. 10, 1250-1256, 2016.