Vol. 87
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-10-25
Clutter Suppression for Cooperative Radar Based on Orthogonal Polarization Character
By
Progress In Electromagnetics Research C, Vol. 87, 227-240, 2018
Abstract
In indoor scenario, radar echoes are interfered by clutter from walls, ceilings, floors, and other indoor objects. Therefore, clutter suppressing is one of the key problems for indoor radar. This paper focuses on the problem of clutter suppressing for a secondary radar system which can be used in indoor localization. A clutter suppressing method based on orthogonal polarization character is presented. The orthogonal polarization character here is achieved by a designed transceiver, which can transpond electromagnetic waves in vertical polarization if and only if the received signal is in horizontal polarization. Thus the newly introduced polarization character can be used to discriminate target from clutter. Clutter is suppressed after calculating scattering similarity parameters via Pauli decomposition. Simulations and an experiment are conducted to demonstrate the proposed method. Compared with previous methods, the proposed method can distinguish stationary target with both static and varying clutters. Therefore, it is more practical for applications.
Citation
Maoqiang Jing, Zhuming Chen, Qianli Wang, and Qi Jiang, "Clutter Suppression for Cooperative Radar Based on Orthogonal Polarization Character," Progress In Electromagnetics Research C, Vol. 87, 227-240, 2018.
doi:10.2528/PIERC18081801
References

1. Deak, G., K. Curran, and J. Condell, "A survey of active and passive indoor localisation systems," Computer Communications, Vol. 35, No. 16, 1939-1954, 2012.
doi:10.1016/j.comcom.2012.06.004

2. Deak, G., K. Curran, and J. Condell, "History aware device-free passive (DfP) localisation," Image Processing and Communications, Vol. 16, No. 16, 21-30, 2011.

3. Farid, Z., R. Nordin, and M. Ismail, "Recent advances in wireless indoor localization techniques and system ," Journal of Computer Networks and Communicaitons, Vol. 2013, Article ID 185138, 12 pages, 2013.

4. Rantakokko, J., J. Rydell, and P. Stromback, "Accurate and reliable soldier and first responder indoor positioning: Multisensor systems and cooperative localization," IEEE Wireless Communications, Vol. 18, No. 2, 10-18, 2011.
doi:10.1109/MWC.2011.5751291

5. Mautz, R., "Indoor positioning technologies," Habilitation Thesis, ETH Zurich, Zurich, Switzerland, 2012.

6. Bahl, P. and V. N. Padmanabhan, "RADAR: An in-building RF-based user location and tracking system," International Conference on Computer Communications, Vol. 2, 775-784, Tel Aviv, Israel, 2000.

7. Chen, L., C. Wu, Y. Zhang, H. Wu, and C. Maple, "A survey of localization in wireless sensor network," Int. J. Distrib. Sens. Netw., Vol. 8, No. 4, 385-391, 2012.

8. Parr, A., R. Miesen, and M. Vossiek, "Comparison of phase-based 3D near-field source localization techniques for UHF RFID," Sensors, Vol. 16, No. 7, 2016.
doi:10.3390/s16070978

9. Nguyen, V. and V. Pyun, "Location detection and tracking of moving targets by a 2D IR-UWB radar system," Sensors, Vol. 15, No. 3, 6740-6762, 2015.
doi:10.3390/s150306740

10. Peng, Z., J. Munozferreras, Y. Tang, R. Gomezgarcia, and C. Li, "Portable coherent frequency-modulated continuous-wave radar for indoor human tracking," Proc. IEEE Topical Conf. Biomed. Wireless Technol., Netw., Sens. Syst. (BioWireleSS), 36-38, Austin, USA, Apr. 2016.

11. Mitilineos, S. A., D. M. Kyriazanos, O. E. Segou, J. N. Goufas, and S. C. A. Thomopoulos, "Indoor localization with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.
doi:10.2528/PIER10062801

12. Munozferreras, J., Z. Peng, R. Gomezgarcia, et al. "Isolate the clutter: pure and hybrid Linear-Frequency-Modulated Continuous-Wave (LFMCW) radars for indoor applications," IEEE Microwave Magazine, Vol. 16, No. 4, 40-54, 2015.
doi:10.1109/MMM.2015.2393995

13. Tivive, F. H., A. Bouzerdoum, and M. Amin, "A subspace projection approach for wall clutter mitigation in Through-the-Wall radar imaging," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 4, 2108-2122, 2015.
doi:10.1109/TGRS.2014.2355211

14. Ash, M., M. Ritchie, and K. Chetty, "On the application of digital moving target indication techniques to Short-Range FMCW radar data," IEEE Sensors Journal, Vol. 18, No. 10, 4167-4175, 2018.
doi:10.1109/JSEN.2018.2823588

15. Pourmottaghi, A., M. R. Taban, and S. Gazor, "A CFAR detector in a nonhomogenous weibull clutter," Trans. Aerosp. Electron. Syst., Vol. 48, No. 2, 1747-1758, 2012.
doi:10.1109/TAES.2012.6178094

16. Lee, B. H., S. Lee, and Y. J. Yoon, "Adaptive clutter suppression algorithm for human detection using IR-UWB radar," IEEE SENSORS, 1-3, Glasgow, UK, Oct. 2017.

17. Valmori, F., A. Giorgetti, and M. Mazzotti, "Indoor detection and tracking of human targets with UWB radar sensor networks," IEEE Int. Conf. Ubiquitous Wireless Broadband (ICUWB), 1-4, Nanjing, China, Dec. 2016.

18. Yang, J., Y. N. Peng, and S. M. Lin, "Similarity between two scattering matrices," Electron. Lett., Vol. 37, No. 3, 193-194, 2001.
doi:10.1049/el:20010104

19. Cloude, S. R., Polarisation: Applications in Remote Sensing, Oxford Univ. Press, London, U.K., 2009.
doi:10.1093/acprof:oso/9780199569731.001.0001

20. Van Zyl, J. J., H. A. Zebker, and C. Elachi, "Imaging radar polarisation signatures: Theory and observations," Radio Science, Vol. 22, 529-543, 1987.
doi:10.1029/RS022i004p00529

21. Yun, Z. and M. F. Iskander, "Ray tracing for radio propagation modeling principles and applications," IEEE Access, Vol. 3, 1089-1100, 2015.
doi:10.1109/ACCESS.2015.2453991

22. Zhou, C., "Ray tracing and modal methods for modeling radio propagation in tunnels with rough walls," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2624-2634, 2017.
doi:10.1109/TAP.2017.2677398

23. Tayebi, A., J. Gomez, F. M. S. D. Adana, and O. Gutierrez Blanco, "The application of ray-tracing to mobile localization using the direction of arrival and received signal strength in multipath indoor environments," Progress In Electromagnetics Research, Vol. 91, 1-15, 2009.
doi:10.2528/PIER09020301

24. Blas Prieto, J., P. Fernandez Reguero, R. M. Lorenzo, E. J. Abril, S. Mazuelas Franco, A. Bahillo Martinez, and D. Bullid, "A model for transition between outdoor and indoor propagation," Progress In Electromagnetics Research, Vol. 85, 147-167, 2008.
doi:10.2528/PIER08072101

25. Martinez, D., F. Las-Heras Andres, and R. G. Ayestaran, "Fast methods for evaluating the electric field level in 2D-indoor environments," Progress In Electromagnetics Research, Vol. 69, 247-255, 2007.
doi:10.2528/PIER06122105