Vol. 89
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-12-25
Design and Analysis of Ridge Substrate Integrated Waveguide Bandpass Filter with Octagonal Complementary Split Ring Resonator for Suppression of Higher Order Harmonics
By
Progress In Electromagnetics Research C, Vol. 89, 87-99, 2019
Abstract
In this research paper, a Ridge Substrate Integrated Waveguide (RSIW) multiple band bandpass filter embedded with an octagonal shape Complementary Split Ring Resonator (CSRRs) is proposed. The electrically coupled octagonal shape CSRR is placed interdigitally in RSIW using transverse coupling technique to improve multiple passband bandwidths. The filter exhibits a highly selective multiple electric or magnetic or bianisotropic mode for different frequencies. The analysis for spurious band suppression has been done by direct method. The prototype configuration of quarter wavelength octagonal CSRR resonators introduces band suppression at all odd harmonics. The proposed structure of filter with dimension 1.36λg×0.52λg excluding feed port is fabricated. Full wave structure simulated results are compared with measurement ones. The measured passband frequencies and their calculated respective central frequency (f0), fractional bandwidth (FBW) are in close agreement with the simulated result. The spurious higher order harmonics are observed as suppressed. The filter can be utilized to suppress interference from LAN, WLAN, GSM, WiMAX and variable stopband for ISM interference.
Citation
Rakesh Kumar, and Shiva Nand Singh, "Design and Analysis of Ridge Substrate Integrated Waveguide Bandpass Filter with Octagonal Complementary Split Ring Resonator for Suppression of Higher Order Harmonics," Progress In Electromagnetics Research C, Vol. 89, 87-99, 2019.
doi:10.2528/PIERC18080404
References

1. Caloz, C. and T. Itoh, "The engineering approach," Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 2006.

2. Hsieh, L.-H. and K. Chang, "Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1241-1246, 2003.
doi:10.1109/TMTT.2003.809643

3. Sun, S. and L. Zhu, "Wideband microstrip ring resonator bandpass filters under multiple resonances," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 10, 2176-2182, 2007.
doi:10.1109/TMTT.2007.906510

4. Zhang, C. A., Y. J. Cheng, and Y. Fan, "Quadri-folded substrate integrated waveguide cavity and its miniaturized bandpass filter applications," Progress In Electromagnetics Research C, Vol. 23, 1-14, 2011.
doi:10.2528/PIERC11052401

5. Kumar, R. and S. N. Singh, "Compact Substrate Integrated Waveguide multiband band pass filter using octagonal complementary split ring resonators," International Journal of Applied Engineering Research, Vol. 12, No. 20, 10 127-10 133, 2017.

6. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 2, 68-70, 2001.
doi:10.1109/7260.914305

7. Che, W., C. Li, K. Deng, and L. Yang, "A novel bandpass filter based on complementary split rings resonators and substrate integrated waveguide," Microwave and Optical Technology Letters, Vol. 50, No. 3, 699-701, 2008.
doi:10.1002/mop.23182

8. Senior, D. E., X. Cheng, and Y. K. Yoon, "Dual-band filters using complementary split-ring resonator and capacitive loaded half-mode substrate-integrated-waveguide," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, IEEE, 2012.

9. Ur Rehman, M. Z., Z. Baharudin, M. A. Zakariya, M. H. M. Khir, M. T. Jilani, and M. T. Khan, "RF MEMS based half mode bowtie shaped substrate integrated waveguide tunable bandpass filter," Progress In Electromagnetics Research C, Vol. 60, 21-30, 2015.
doi:10.2528/PIERC15091407

10. Bozzi, M., D. Deslandes, P. Arcioni, L. Perregrini, K. Wu, and G. Conciauro, "Efficient analysis and experimental verification of substrate-integrated slab waveguides for wideband microwave applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 15, No. 3, 296-306, 2005.
doi:10.1002/mmce.20085

11. Ramesh, S. and T. Rama Rao, "Dielectric loaded exponentially tapered slot antenna utilizing substrate integrated waveguide technology for millimeter wave applications," Progress In Electromagnetics Research C, Vol. 42, 149-164, 2013.
doi:10.2528/PIERC13062003

12. Chen, L.-N., Y.-C. Jiao, Z. Zhang, and F.-S. Zhang, "Miniaturized substrate integrated waveguide dual-mode filters loaded by a series of cross-slot structures," Progress In Electromagnetics Research C, Vol. 29, 29-39, 2012.
doi:10.2528/PIERC12032302

13. Hopfer, S., "The design of ridged waveguides," IRE Transactions on Microwave Theory and Techniques, Vol. 3, No. 5, 20-29, 1955.
doi:10.1109/TMTT.1955.1124972

14. Kazemi, R. and A. E. Fathy, "Design of a wideband eight-way single ridge substrate integrated waveguide power divider," IET Microwaves, Antennas & Propagation, Vol. 9, No. 7, 648-656, 2014.
doi:10.1049/iet-map.2014.0480

15. Li, C., W. Che, P. Russer, and Y. Chow, "Propagation and band broadening effect of planar ridged substrate-integrated waveguide (RSIW)," International Conference on Microwave and Millimeter Wave Technology, 2008. ICMMT 2008, Vol. 2, 467-470, IEEE, 2008.

16. Cheng, Y. J., C. A. Zhang, and Y. Fan, "Miniaturized multilayer folded substrate integrated waveguide butler matrix," Progress In Electromagnetics Research C, Vol. 21, 45-58, 2011.
doi:10.2528/PIERC11020502

17. Han, S., X.-L. Wang, and Y. Fan, "Analysis and design of multiple-band bandstop filters," Progress In Electromagnetics Research, Vol. 70, 297-306, 2007.
doi:10.2528/PIER07020903

18. Bozzi, M., S. A. Winkler, and K. Wu, "Novel compact and broadband interconnects based on ridge substrate integrated waveguide," IEEE MTT-S International Microwave Symposium Digest, 2009. MTT’09, 121-124, IEEE, 2009.
doi:10.1109/MWSYM.2009.5165647

19. Huang, L. and H. Cha, "Compact ridge substrate integrated waveguide filter with transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 778-780, 2015.
doi:10.1109/LMWC.2015.2496802

20. Mallahzadeh, A. and S. Mohammad-Ali-Nezhad, "A low cross-polarization slotted ridged SIW array antenna design with mutual coupling considerations," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4324-4333, 2015.
doi:10.1109/TAP.2015.2457952

21. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter using complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.

22. Gil, M., J. Bonache, and F. Martin, "Metamaterial filters: A review," Metamaterials, Vol. 2, No. 4, 186-197, 2008.
doi:10.1016/j.metmat.2008.07.006

23. Chen, C.-F., T.-Y. Huang, and R.-B. Wu, "Design of microstrip bandpass filters with multiorder spurious-mode suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3788-3793, 2005.
doi:10.1109/TMTT.2005.859869

24. Thammawongsa, N., R. Phromloungsri, K. Somsuk, and P. Arunvipas, "Harmonic suppression improvement of microstrip open loop ring resonator bandpass filter," Procedia Engineering, Vol. 8, 19-24, 2011.
doi:10.1016/j.proeng.2011.03.004

25. Ranjan, P., A. Choubey, S. K.Mahto, and R. Sinha, "An ultrathin five-band polarization insensitive metamaterial absorber having hexagonal array of 2D-bravais-lattice," Progress In Electromagnetics Research C, Vol. 87, 13-23, 2018.

26. Yang, Q. and Y. Zhang, "Negative-order ridge substrate integrated waveguide coupled-resonator filter," Electronics Letters, Vol. 50, No. 4, 290-291, 2014.
doi:10.1049/el.2013.2885

27. Bozzi, M., S. Germani, and L. Perregrini, "Performance comparison of different element shapes used in printed reflectarrays," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 219-222, 2003.
doi:10.1109/LAWP.2003.819687

28. Winkler, S. A., W. Hong, M. Bozzi, and K. Wu, "Polarization rotating frequency selective surface based on substrate integrated waveguide technology," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1202-1213, 2010.
doi:10.1109/TAP.2010.2041170

29. Ji, Y., X. S. Yao, and L. Maleki, "High-Q whispering gallery mode dielectric resonator bandpass filter with microstrip line coupling and photonic bandgap mode-suppression," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 8, 310-312, 2000.
doi:10.1109/75.862224

30. Smith, D., D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

31. Rambabu, K., M.-W. Chia, K. M. Chan, and J. Bornemann, "Design of multiple-stopband filters for interference suppression in UWB applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 8, 3333-3338, 2006.
doi:10.1109/TMTT.2006.877813

32. Yang, T., P.-L. Chi, R. Xu, and W. Lin, "Folded substrate integrated waveguide based composite right/left-handed transmission line and its application to partial H-plane filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 789-799, 2013.
doi:10.1109/TMTT.2012.2231431

33. Xu, J., W. Wu, and G. Wei, "Compact multi-band bandpass filters with mixed electric and magnetic coupling using multiple-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 3909-3919, 2015.
doi:10.1109/TMTT.2015.2488643

34. Zhan, X., Z.-X. Tang, H. Liu, Y. Wu, and B. Zhang, "Compact multiband transversal bandpass filters with multiple transmission zeroes," Progress In Electromagnetics Research, Vol. 34, 157-167, 2012.
doi:10.2528/PIERL12080501

35. Lin, S.-C., "Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 8, 1937-1946, 2011.
doi:10.1109/TMTT.2011.2142191

36. Gorur, A. K. and C. Karpuz, "Design of compact multi-band microstrip bandpass filter having simultaneously excited passbands by using open-circuited stubs," IEEE MTT-S Int. Microwave Symp. Dig., 1-3, 2013.

37. Chen, C., "Design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped-impedance resonators," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 7, 357-359, July 2012.
doi:10.1109/LMWC.2012.2202894

38. Tu, W.-H. and K.-W. Hsu, "Design of sext-band bandpass filter and sextaplexer using semilumped resonators for system in a package," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 5, No. 2, 265-273, 2015.
doi:10.1109/TCPMT.2014.2387198

39. Gómez García, R., J.-M. Muñoz-Ferreras, and M. Sánchez-Renedo, "Microwave transversal six-band bandpass planar filter for multi-standard wireless applications," 2011 IEEE Radio and Wireless Symposium (RWS), 166-169, IEEE, 2011.
doi:10.1109/RWS.2011.5727976