Vol. 87
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-10-09
Analytical Expression of the Magnetic Field Created by a Permanent Magnet with Diametrical Magnetization
By
Progress In Electromagnetics Research C, Vol. 87, 163-174, 2018
Abstract
Cylindrical/ring-shaped permanent magnets with diametrical magnetization can be found in many applications, ranging from electrical motors to position sensory systems. In order to correctly calculate the magnetic field generated by a permanent magnet of this kind with low computational cost, several studies have been reported in literature providing analytical expressions. However, these analytical expressions are either limited for an infinite cylinder or for computing the magnetic field only on the central axis of a finite cylinder. The others are derived to calculate the magnetic field at any point in three-dimensional (3D) space but only with low accuracy. This paper presents an exact analytical model of the magnetic field, generated by a diametrically magnetized cylindrical/ring-shaped permanent magnet with a limited length, which can be used to calculate the magnetic field of any point in 3D space fast and with very high accuracy. The expressions were analytically derived, based on geometrical analysis without calculating the magnetic scalar potential. Also, there is no approximation in the derivation steps that yields the exact analytical model. Three components of the magnetic field are analytically represented using complete and incomplete elliptical integrals, which are robust and have low computational cost. The accuracy of the developed analytical model was validated using Finite Element Analysis and compared against existing models.
Citation
Van Tai Nguyen, and Tien-Fu Lu, "Analytical Expression of the Magnetic Field Created by a Permanent Magnet with Diametrical Magnetization," Progress In Electromagnetics Research C, Vol. 87, 163-174, 2018.
doi:10.2528/PIERC18073001
References

1. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Permanent magnet couplings: Field and torque three-dimensional expressions based on the Coulombian model," IEEE Trans. on Magn., Vol. 45, No. 4, 1950-1958, Apr. 2009.
doi:10.1109/TMAG.2008.2010623

2. Cuguat, O., J. Delamare, and G. Reyne, "Magnetic micro-actuators and systems (magmas)," IEEE Trans. Magn., Vol. 39, No. 5, 3607-3612, Sep. 2003.
doi:10.1109/TMAG.2003.816763

3. Wang, J., G. W. Jewell, and D. Howe, "Design optimisation and comparison of permanent magnet machines topologies," Proc. Inst. Elect. Eng., Vol. 148, 456-464, 2001.

4. Charpentier, J. F. and G. Lemarquand, "Optimization of unconventional p.m. couplings," IEEE Trans. Magn., Vol. 38, No. 2, 1093-1096, Mar. 2002.
doi:10.1109/20.996280

5. Lemarquand, V., J. F. Charpentier, and G. Lemarquand, "Nonsinusoidal torque of permanent-magnet couplings," IEEE Trans. Magn., Vol. 35, No. 5, 4200-4205, Sep. 1999.
doi:10.1109/20.799068

6. Berkouk, M., V. Lemarquand, and G. Lemarquand, "Analytical calculation of ironless loudspeaker motors," IEEE Trans. Magn., Vol. 37, No. 2, 1011-1014, Mar. 2001.
doi:10.1109/20.917185

7. Kwon, O. M., C. Surussavadee, M. Chari, S. Salon, and K. Vasubramaniam, "Analysis of the far field of permanent magnet motors and effects of geometric asymmetries and unbalance in magnet design," IEEE Trans. Magn., Vol. 40, No. 3, 435-442, May 2004.
doi:10.1109/TMAG.2004.824117

8. Paperno, E., I. Sasada, and E. Leonovich, "A new method for magnetic position and orientation tracking," IEEE Trans. Magn., Vol. 37, No. 4, 1938-1940, Jul. 2001.
doi:10.1109/20.951014

9. Fountain, T. W. R., P. V. Kailat, and J. J. Abbott, "Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator," Proc. IEEE Int. Conf. Robot. Autom., 576-581, 2010.

10. Wu, S.-T., J.-Y. Chen, and S.-H. Wu, "A rotary encoder with an eccentrically mounted ring magnet," IEEE Trans. Instrum. Meas., Vol. 63, No. 8, 1907-1915, Aug. 2014.
doi:10.1109/TIM.2014.2302243

11. Ng, K., Z. Q. Zhu, and D. Howe, "Open-circuit field distribution in a brushless motor with diametrically magnetised PM rotor, accounting for slotting and eddy current effects," IEEE Trans. on Magn., Vol. 32, No. 5, 5070-5072, 1996.
doi:10.1109/20.539493

12. Eid, G. and A. Mouillet, "Transistorized dc brushless micromotor with rare-earth permanent magnets," Proc. Int. Conf. on Electr. Mach., 570-573, 1984.

13. Jang, S. M., M. M. Koo, Y. S. Park, J. Y. Choi, and S. H. Lee, "Characteristic analysis on permanent magnet synchronous machines with three types of diametrically magnetized rotors under magnetic circuit construction conditions," Proc. IEEE Vehi. Power and Prop. Conf., 227-230, 2012.

14. Jang, S. M., J. Y. Choi, D. J. You, and H. S. Yang, "Electromagnetic analysis of high speed machines with diametrically magnetized rotor considering slotting effect and applied to new magnetization modelling," Proc. IEEE Int. Conf. on Electr. Mach. and Driv., 1204-1211, 2005.
doi:10.1109/IEMDC.2005.195875

15. Lemarquand, G. and V. Lemarquand, "Annular magnet position sensor," IEEE Trans. on Magn., Vol. 26, No. 5, 2041-2043, 1990.
doi:10.1109/20.104612

16. Smirnov, Y., T. Kozina, E. Yurasova, and A. Sokolov, "Analog-to-Digital converters of the components of a displacement with the use of microelectronic sine-cosine magnetic encoders," Measurement Techniques, Vol. 57, 41-46, 2014.
doi:10.1007/s11018-014-0404-5

17. Lenzo, B., M. Fontana, S. Marcheschi, F. Salsedo, A. Frisoli, and M. Bergamasco, "Trackhold: A novel passive arm-support device," ASME J. Mechan. and Robo., Vol. 8, 1-9, 2015.

18. Wang, S., J. Jin, T. Li, and G. Liu, "High-accuracy magnetic rotary encoder," System Simulation and Scientific Computing, 74-82, 2012.
doi:10.1007/978-3-642-34381-0_9

19. Nguyen, V. T., T.-F. Lu, and P. Grimshaw, "Human intention recognition based on contact-less sensors to control an elbow and forearm assistive exoskeleton," Proc. Int. Conf. Asi. Soc. for Prec. Engin. and Nano. (ASPEN 2017), Nov. 2017.

20. Schaller, V., U. Kraling, C. Rusu, K. Petersson, J. Wipenmyr, A. Krozer, G. Wahnstrom, A. Sanz-Velasco, P. Enoksson, and C. Johansson, "Motion of nanometer sized magnetic particles in a magnetic field gradient," J. Appl. Phys., Vol. 104, 093918, 2008.
doi:10.1063/1.3009686

21. Warnke, K., "Finite-element modelling of the separation of magnetic microparticles in fluid," IEEE Trans. Magn., Vol. 39, No. 3, 1771-1777, May 2003.
doi:10.1109/TMAG.2003.810609

22. Caciagli, A., R. J. Baars, A. P. Philipse, and B. W. M. Kuipers, "Exact expression for the magnetic field of a finite cylinder with arbitrary uniform magnetization," J. Mag. and Mag. Mater., Vol. 456, 423-432, Jun. 2018.
doi:10.1016/j.jmmm.2018.02.003

23. Robertson, W., B. Cazzolato, and A. Zander, "A simplified force equation for coaxial cylindrical magnets and thin coils," IEEE Trans. on Magn., Vol. 47, No. 8, 2045-2049, 2011.
doi:10.1109/TMAG.2011.2129524

24. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. on Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096

25. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet," Progress In Electromagnetics Research, Vol. 88, 307-319, 2008.
doi:10.2528/PIER08112708

26. Stratton, J., Electromagnetic Theory, McGraw-Hill Book Company, New York and London, 1941.

27. Oberteuffer, J., "Magnetic separation: A review of principles, devices, and applications," IEEE Trans. Magn., Vol. 10, No. 2, 223-238, 1974.
doi:10.1109/TMAG.1974.1058315

28. Wysin, G., "Demagnetization fields,", available on https://www.phys.ksu.edu/personal/wysin/notes/demag.pdf.

29. Fontana, M., F. Salsedo, and M. Bergamasco, "Novel magnetic sensing approach with improved linearity," Sensors, No. 6, 7618-7632, 2013.
doi:10.3390/s130607618

30. Furlani, E. P., Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications, Academic Press, 2001.

31. Rakotoarison, H. L., J. P. Yonnet, and B. Delinchant, "Using Coulombian approach for modeling scalar potential and magnetic field of a permanent magnet with radial polarization," IEEE Trans. on Magn., Vol. 43, No. 4, 1261-1264, 2007.
doi:10.1109/TMAG.2007.892316

32. Ravaud, R. and G. Lemarquand, "Comparison of the Coulombian and Amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.

33. Babic, S. I. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress in Electromagnetics Research C, Vol. 5, 71-82, 2008.

34. Ravau, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Magnetic field produced by a tile permanent magnet whose polarization is both uniform and tangential," Progress In Electromagnetics Research B, Vol. 13, 1-20, 2009.
doi:10.2528/PIERB08121901

35. Ravaud, R. and G. Lemarquand, "Analytical expression of the magnetic field created by tile permanent magnets tangentially magnetized and radial currents in massive disks," Progress In Electromagnetics Research B, Vol. 13, 309-328, 2009.

36. Fukushima, T., "Precise, compact, and fast computation of complete elliptic integrals by piecewise minimax rational function approximation ," J. Comp. Appl. Math., Vol. 282, 71-76, 2015.
doi:10.1016/j.cam.2014.12.038

37. Fukushima, T., "Fast computation of incomplete elliptic integral of first kind by half argument transformation," Numer. Math., Vol. 116, 687-719, 2010.
doi:10.1007/s00211-010-0321-8

38. Fukushima, T., "Precise and fast computation of a general incomplete elliptic integral of second kind by half and double argument transformations," J. Comp. Appl. Math., Vol. 235, 4140-4148, 2011.
doi:10.1016/j.cam.2011.03.004

39. Fukushima, T., "Precise and fast computation of a general incomplete elliptic integral of third kind by half and double argument transformations," J. Comput. Appl. Math., Vol. 236, 1961-1975, 2012.
doi:10.1016/j.cam.2011.11.007