Vol. 86
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-09-06
Novel Broadband High Gain Antenna Designed by Suspended Cylinder and Shorting PIN
By
Progress In Electromagnetics Research C, Vol. 86, 247-256, 2018
Abstract
Desire for a broadband, high gain, unidirectional and low cost antenna in the field of communications is everlasting. In this paper, a novel broadband high gain antenna is presented using a suspended cylinder and a ground connected cylinder geometry. The bandwidth of the proposed antenna is enhanced by shorting these two cylinders with a pin in the direction orthogonal to the plane of coaxial probe. This low profile antenna structure is simple and easy to fabricate. The cylinders, shorting pin and ground plane are fabricated by a copper sheet of thickness 0.4 mm. Shorting pin and SMA connector provide mechanical support to the suspended cylinder. Simulations are done to analyze the radiation performance of the antenna. Prototype of the antenna is fabricated, and the measured results show good agreement with the simulated ones to confirm the enhanced bandwidth offered by the proposed antenna. We achieve impedance bandwidth of 63% (2.6-5 GHz) with the peak broadside gain of 9.87 dB. The bandwidth of the proposed antenna can be tuned by changing the radius of the shorting pin. The designed antenna possesses broadband high gain with stable broadside unidirectional radiation pattern which is suitable for Base station antenna such as WiMax (Worldwide Interoperability for Microwave Access) and LTE (Long Term Evolution). The metallic antenna has high power handling capacity as compared to microstrip and dielectric antennas.Therefore, this antenna can also be used for high power transfer application.
Citation
Subash Chandra Yadav, and Siddhartha P. Duttagupta, "Novel Broadband High Gain Antenna Designed by Suspended Cylinder and Shorting PIN," Progress In Electromagnetics Research C, Vol. 86, 247-256, 2018.
doi:10.2528/PIERC18072206
References

1. Chen, Z. N., W. Liu, and X. Qing, "Low-profile broadband mushroom and metasurface antennas," International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT), 1-4, Athens, Greece, March 2017.

2. Prasad, C. S. and A. Biswas, "Planar excitation of dielectric waveguide antenna for broadband and high-gain application," IEEE Antenna and Wireless Propagation Letters, Vol. 16, 1209-1212, 2017.
doi:10.1109/LAWP.2016.2628164

3. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., 811, John Wiley & Sons, New York, 2011.

4. Baheti, H., D. Kumar Pathak, and U. K. Kommuri, "Broadband and high gain low profile(thin) capacitive-coupled microstrip antennas for wireless applications," Annual IEEE India Conference (INDICON), 1-4, December 2015.

5. Ozden, O., M. Karaaslan, E. Unal, and D Kapusuz, "Multistrip monopole antenna for UWB applications," IEEE Signal Processing and Communications Applications Conference (SIU), 1-4, 2012.

6. Liang, M., J. Wu, X. Yu, and H. Xin, "3D printing technology for RF and THz antennas," IEEE International Symposium on Antennas and Propagation (ISAP), 536-537, Japan, October 2016.

7. Garcia, C. R., R. C. Rumpf, H. H. Tsang, and J. H. Barton, "Effects of extreme surface roughness on 3D printed horn antenna," Electronics Letters, Vol. 49, No. 12, 734-736, June 2013.
doi:10.1049/el.2013.1528

8. Pattanayak, A., S. Roy, G. Rana, S. P. Duttagupta, V. G. Achanta, and S. S. Prabhu, "Study of plasmon hybridization of a loop Yagi-Uda absorber," Scientific Reports, Vol. 7, 16961, 2017.
doi:10.1038/s41598-017-17311-3

9. Criollo, E. H. and C. I. Paez, "Improved broadband double ridged horn antenna without split radiation pattern," IEEE Latin America Transactions, Vol. 14, No. 3, 1156-1161, March 2016.
doi:10.1109/TLA.2016.7459593

10. Lim, T. H., J.-E. Park, and H. Choo, "Design of the Vivaldi-fed hybrid horn antenna for low frequency gain enhancement," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 438-443, January 2018.
doi:10.1109/TAP.2017.2776608

11. Tianang, E. G., M. A. Elmansouri, and D. S. Filipovic, "Ultra-wideband lossless cavity-backed Vivaldi antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 115-124, January 2018.
doi:10.1109/TAP.2017.2775286

12. Lu, W.-J., G.-M. Liu, K. F. Tong, and H.-B. Zhu, "Dual-band loop-dipole composite unidirectional antenna for broadband wireless communication system," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2860-2866, May 2014.
doi:10.1109/TAP.2014.2307343

13. Gupta, R. D. and M. S. Parihar, "Differentially fed wideband rectangular DRA with high gain using short horn," IEEE Antenna and Wireless Propagation Letter, Vol. 16, 1804-1807, 2017.

14. Liu, L., S. Lin, A. Denisov, D. Liang, Y. Cao, and S. Tian, "A broadband and high gain yagi antenna with complex parabolic boundary reflector," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1785-1786, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8072935

15. Zhang, H.-Y., F.-S. Zhang, and F. Zhang, "A novel high-gain cavity slot antenna based on polarization twist reflector for high power microwave application," Progress In Electromagnetics Research C, Vol. 76, 23-31, 2017.

16. Shah, S. I. H., D. Lee, M. M. Tentzeris, and S. Lim, "A novel high-gain tetrahedron origami," IEEE Antennas and Wireless Propgation Letters, Vol. 16, 848-851, 2017.
doi:10.1109/LAWP.2016.2609898

17. Kim, D. and E. Kim, "A high-gain wideband antenna with frequency selective side reflectors operating in an anti-resonant mode," IEEE Antennas Wireless Propagation Letter, Vol. 14, 442-445, 2015.
doi:10.1109/LAWP.2014.2363199

18. Yeo, J. and J.-I. Lee, "Bandwidth enhancement of double-dipole Quasi-Yagi antenna using stepped slot line structure," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 694-697, 2016.
doi:10.1109/LAWP.2015.2469677

19. Jiang, Z. H., Q. Wu, D. E. Brocker, P. E. Sieber, and D. H. Werner, "A low-profile high-gain substrate-integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1173-1184, March 2014.
doi:10.1109/TAP.2013.2294354

20. Werner, P. L., Z. Bayraktar, B. Rybicki, D. H. Werner, K. J. Schlager, and D. Linden, "Stub-loaded long-wire monopoles optimized for high gain performance," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 639-644, March 2008.
doi:10.1109/TAP.2008.916936

21. Karaaslan, M., E. Unal, E. Tetik, K. Delihacıoglu, F. karadag, and F. Dincer, "Low profile radiation enhancement with novel electromagnetic band gap structure," IET Microwave, Antennas & Propagation, Vol. 7, 215-221, January 2013.
doi:10.1049/iet-map.2012.0545

22. Oh, K.-H. and J.-I. Song, "Investigation of surface-wave reduction in UC-PBG patch antenna by using a transient electrooptic near-field mapping technique," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3602-3607, December 2006.
doi:10.1109/TAP.2006.886558

23. Dincer, F., M. Karaaslan, M. Bakır, O. Akgol, E. Unal, K. Delihacioglu, and C. Sabah, "Increasing bandwidth in antenna applications By using chiral metamaterials," IEEE Signal Processing and Communications Applications Conference (SIU), 316-318, 2015.

24. Ozturk, M., U. K. Sevim, O. Akgol, E. Unal, and M. Karaaslan, "Determination of physical properties of concrete by using microwave nondistructive technique," ACES Journal, Vol. 33, No. 3, March 2018.