Vol. 88
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-10-31
Common-Mode Impedance of a Ferrite Toroid on a Cable Harness
By
Progress In Electromagnetics Research C, Vol. 88, 27-41, 2018
Abstract
Ferrite toroids (or clamps) are widely used to reduce common-mode (CM) currents in power systems. The CM impedance of the ferrite depends on the frequency-dispersive permeability and permittivity of the ferrite, the geometry of the system, and the location of the ferrite in it. An analytical model was developed to predict the CM impedance of a wire harness above a return plane with a ferrite on it. The model is based on transmission line theory for a cable, a ferrite, and a return plane. The parameters of the model are calculated using a frequency-dependent quasistatic model for a ferrite toroid. This model accurately predicts the CM impedance of a mock harness within 3 dB up to 1 GHz. The proposed model is also applied to a real power system consisting of an inverter and a motor. Knowledge of the CM impedance of the system in the operating regime is critical to determining the impact of the ferrite on CM currents. The CM impedance is determined using the dual current clamp technique. The impact of the ferrite on the CM impedance and currents of the power inverter system was predicted within 3 dB, demonstrating the usefulness of the modelling approach for analysis of power systems.
Citation
Natalia Bondarenko, Marina Koledintseva, Peng Shao, Phil Berger, David J. Pommerenke, and Daryl G. Beetner, "Common-Mode Impedance of a Ferrite Toroid on a Cable Harness," Progress In Electromagnetics Research C, Vol. 88, 27-41, 2018.
doi:10.2528/PIERC18071405
References

1. Izydorczyk, J., "Simulation of ferrites by SPICE," Proceedings of European Conference on Circuit, Theory and Design, I/43-I/46, ECCTD05, Cork Ireland, Aug. 29-Sep. 2, 2005.

2. Mohri, K., T. Kohzawa, K. Kawashima, H. Yoshida, and L. V. Panina, "Magneto-inductive effect (MI effect) in amorphous wires," IEEE Trans. Magnetics, Vol. 28, No. 5, 3150-3152, Sep. 1992.
doi:10.1109/20.179741

3. Muyshondt, G. P. and W. M. Portnoy, "Development of high frequency spice models for ferrite core inductors and transformers," Industry Applications Conference, 1328-1333, San Diego, CA, Oct. 1-5, 1989.

4. Yu, Q., T. W. Holmes, and K. Naishadham, "RF equivalent circuit modeling of ferrite-core inductors and characterization of core materials," IEEE Trans. Electromagn. Compat., Vol. 44, No. 1, 258-262, Feb. 2002.
doi:10.1109/15.990733

5. Kazimierczuk, M., G. Sancineto, G. Grandi, U. Reggiani, and A. Massarini, "High-frequency small-signal model of ferrite core inductors," IEEE Trans. Magnetics, Vol. 35, No. 5, 4185-4191, Sep. 1999.
doi:10.1109/20.799066

6. Fujiwara, O. and T. Ichikawa, "An analysis of load effects produced by ferrite core attachment," Electronics and Communications in Japan, Part 1, Vol. 80, No. 9, 19-24, 1997.

7. Samir, A. Z. and O. Fujiwara, "Measurement and verification of complex permeability of ferrite material by S-parameter techniques," IEEE Trans. Japan, Vol. 119-C, 9-14, 1999.

8. Ichikawa, T., H. Kawada, and O. Fujiwara, "An analysis of normal-mode noise caused by braided shield current flowing on coaxial cable attached by a ferrite core," Trans. IEICE, Vol. J81-B-II, 327-335, 1998.

9. Maekawa, T. and O. Fujiwara, "Calculation of electric far field radiated from transmission line attached to a ferrite core above a ground plane," Electronics and Communications in Japan, Part 1, Vol. 86, No. 5, 2003, Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J84-B, No. 12, 2374-2381, Dec. 2001.

10. Yazdani, M. R., H. Farzanehfard, and J. Faiz, "Classification and comparison of emi mitigation techniques in switching power converters --- A review," Journal of Power Electronics, Vol. 11, No. 5, 765-777, Sep. 2011.
doi:10.6113/JPE.2011.11.5.767

11. Naishadham, K., "Closed-form design formulas for the equivalent circuit characterization of ferrite inductors," IEEE Trans. Electromagn. Compat., Vol. 53, No. 4, 923-932, Nov. 2011.
doi:10.1109/TEMC.2011.2116795

12. Naishadham, K., "Extrinsic equivalent circuit modeling of SMD inductors for printed circuit applications," IEEE Trans. Electromagn. Compat., Special Issue on Printed Circuit Board EMC, Vol. 43, No. 4, 557-565, Nov. 2001.
doi:10.1109/TEMC.2011.2116795

13. Naishadham, K. and T. Durak, "Measurement-based closed-form modeling of surface-mounted RF components," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 10, 2276-2286, Oct. 2002.
doi:10.1109/TMTT.2002.803431

14. Orlando, A., M. Y. Koledintseva, D. G. Beetner, P. Shao, and P. H. Berger, "Lumped-element circuit model of ferrite chokes," IEEE Symp. Electromag. Compat., 754-759, Fort Lauderdale, FL, Jul. 25-30, 2010.

15. Liu, G., Y. Ding, C. Chen, R. Kautz, J. L. Drewniak, D. J. Pommerenke, and M. Y. Koledintseva, "A dual-current-probe method for characterizing CM loop impedance," IEEE Instrum. Measur. Techn. Conf. (IMTC), 1239-1244, Vail, CO, USA, May 2003.

16. Bondarenko, N., P. Shao, M. Koledintseva, D. Beetner, and P. Berger, "Prediction of common-mode current reduction using ferrites in systems with cable harnesses," Proceeding of IEEE EMC Symposium 2012, 80-84, Pittsburgh, Aug. 2012.

17. Pozar, D. M., Microwave Engineering, Section 2.1, 62, Wiley, 1998.

18. Xu, J., M. Y. Koledintseva, Y. Zhang, Y. He, B. Matlin, R. E. DuBroff, J. L. Drewniak, and J. Zhang, "Complex permittivity and permeability measurements and finite-difference time-domain simulation of ferrite materials," IEEE Trans. Electromagn. Compat., Vol. 52, No. 4, 878-887, Nov. 2010.
doi:10.1109/TEMC.2010.2050693

19. Xiang, Y., "The electrostatic capacitance of an inclined plate capacitor," J. Electrostat., Vol. 64, 29-34, 2006.
doi:10.1016/j.elstat.2005.05.002

20. Standard P1597, Standard for Validation of Computational Elecromagnetics Computer Modeling and Simulation --- Part 1, 2008.

21. Duffy, A. P., J. M. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S.Woolfson, "Feature Selective Validation (FSV) for validation of computational electromagnetic (CEM). Part I --- The FSV method," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 449-459, Aug. 2006.
doi:10.1109/TEMC.2006.879358