Vol. 87
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-09-25
Reflective Metasurface for Vortex Wave Generating and Divergence Reducing in X-Band
By
Progress In Electromagnetics Research C, Vol. 87, 97-106, 2018
Abstract
In this paper, a novel and simple solution for generating vortex electromagnetic wave and reducing divergence simultaneously in a wideband is presented. Based on phase gradient metasurface, we design a metasurface that can convert an ordinary electromagnetic wave into a vortex one and focus the vortex wave in X-band. Double layer rectangular metal patch units of different sizes are arranged in a certain order to compose the metasurface. The phase introduced by the metasurface is superimposed by the vortex phase and focusing phase. Compared to a general vortex wave metasurface, the simulation results show that the divergence of the reflected vortex wave generated by our designed metasurface is dramatically reduced in the frequency range from 8 GHz to 12 GHz. It is indicated that the designed metasurface has a highly efficient focusing effect, and it is also in a good agreement with the theoretical analysis. The proposed reflective metasurface paves an effective way to reduce the divergence of vortex electromagnetic wave for OAM-based system in microwave and radio frequency.
Citation
Xiaohang Dong, Hengyi Sun, Chang Qing Gu, Zhuo Li, Xinlei Chen, and Baijie Xu, "Reflective Metasurface for Vortex Wave Generating and Divergence Reducing in X-Band," Progress In Electromagnetics Research C, Vol. 87, 97-106, 2018.
doi:10.2528/PIERC18070505
References

1. Beth, R. A., "Mechanical detection and measurement of the angular momentum of light," Physical Review, Vol. 50, No. 2, 115-125, 1936.
doi:10.1103/PhysRev.50.115

2. Jackson, J. D., Classical Electrodynamics, Nuclear Physics, John Wiley & Sons Ltd., New York, 1963.

3. Allen, L., M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review & Atomic Molecular & Optical Physics, Vol. 45, No. 11, 81-85, 1992.

4. Gibson, G., et al. "Free-space information transfer using light beams carrying orbital angular momentum," Optics Express, Vol. 12, No. 22, 5448-5456, 2004.
doi:10.1364/OPEX.12.005448

5. Ren, Y., et al. "Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m," Optics Letters, Vol. 41, No. 3, 622-625, 2016.
doi:10.1364/OL.41.000622

6. Yao, A. M. and M. J. Padgett, "Orbital angular momentum: Origins, behavior and applications," Advances in Optics & Photonics, Vol. 3, No. 2, 161-204, 2011.
doi:10.1364/AOP.3.000161

7. Padgett, M. J. and L. Allen, "The angular momentum of light: Optical spanners and the rotational frequency shift," Optical & Quantum Electronics, Vol. 31, No. 1, 1-12, 1999.
doi:10.1023/A:1006911428303

8. Torner, L., J. Torres, and S. Carrasco, "Digital spiral imaging," Optics Express, Vol. 13, No. 3, 873-881, 2005.
doi:10.1364/OPEX.13.000873

9. Torres, J. P. and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum, Wiley-VCH, 2011.
doi:10.1002/9783527635368

10. Thide, B., et al. "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007.
doi:10.1103/PhysRevLett.99.087701

11. Mohammadi, S. M., et al. "Orbital angular momentum in radio --- A system study," IEEE Transactions on Antennas & Propagation, Vol. 58, No. 2, 565-572, 2010.
doi:10.1109/TAP.2009.2037701

12. Tamburini, F., et al. "Encoding many channels in the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 3, 811-815, 2011.

13. Lin, M., Y. Gao, P. Liu, and J. Liu, "Super-resolution orbital angular momentum based radar targets detection," Electronics Letters, Vol. 52, No. 13, 1168-1170, 2016.
doi:10.1049/el.2016.0237

14. Yuan, T., H. Wang, Y. Qin, and Y. Cheng, "Electromagnetic vortex imaging using uniform concentric circular arrays," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 1024-1027, 2016.
doi:10.1109/LAWP.2015.2490169

15. Tamburini, F., et al. "Experimental demonstration of free-space information transfer using phase modulated orbital angular momentum radio," Physics, Vol. 13, No. 2, 20-25, 2013.

16. Zhang, Z., S. Zheng, X. Jin, H., Chi, and X. Zhang, "Generation of plane spiral OAM waves using traveling-wave circular slot antenna," IEEE Antennas & Wireless Propagation Letters, Vol. 16, 8-11, 2016.

17. Yu, S., L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, "Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain," Applied Physics Letters, Vol. 108, No. 12, 5448, 2016.
doi:10.1063/1.4944789

18. Yu, S., G. Shi, C. Zhu, and Y. Shi, "Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 24, 241901, 2016.
doi:10.1063/1.4953786

19. Jin, J., et al. "Generation and detection of orbital angular momentum via metasurface," Scientific Reports, Vol. 6, 24286, 2016.
doi:10.1038/srep24286

20. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency," Journal of Applied Physics, Vol. 119, No. 6, 064506, 2016.
doi:10.1063/1.4941696

21. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies," IEEE Transactions on Antennas & Propagation, Vol. 65, No. 1, 396-400, 2017.
doi:10.1109/TAP.2016.2626722

22. Chen, M., L. J. Jiang, and W. E. I. Sha, "Detection of orbital angular momentum with metasurface at microwave band," IEEE Antennas & Wireless Propagation Letters, Vol. 17, No. 1, 110-113, 2018.
doi:10.1109/LAWP.2017.2777439

23. Xu, H. X., H. Liu, X. Ling, Y. Sun, and F. Yuan, "Broadband vortex beam generation using multimode pancharatnam{berry metasurface," IEEE Transactions on Antennas & Propagation, Vol. 65, No. 12, 7378-7382, 2017.
doi:10.1109/TAP.2017.2761548

24. Zhang, Y., L. Yang, H. Wang, X. Zhang, and X. Jin, "Transforming surface wave to propagating OAM vortex wave via flat dispersive metasurface in radio frequency," IEEE Antennas & Wireless Propagation Letters, Vol. 17, No. 1, 172-175, 2018.
doi:10.1109/LAWP.2017.2779269

25. Li, Y., B. Liang, Z. M. Gu, X. Y. Zou, and J. C. Cheng, "Reflected wave-front manipulation based on ultrathin planar acoustic metasurfaces," Scientific Reports, Vol. 3, 2546, 2013.
doi:10.1038/srep02546

26. Yu, N., et al. "Light propagation with phase discontinuities reflection and refraction," Science, Vol. 334, 333-337, 2011.
doi:10.1126/science.1210713

27. Khorasaninejad, M., W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, Vol. 352, 1190-1194, 2016.
doi:10.1126/science.aaf6644

28. Ma, X., et al. "A planar chiral meta-surface for optical vortex generation and focusing," Scientific Reports, Vol. 5, 10365, 2015.
doi:10.1038/srep10365

29. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas & Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714

30. Cai, B., L. Zhou, Q. He, S. Xiao, T. J. Cui, and X. Li, "Flat metasurfaces to focus electromagnetic waves in re," Optics Letters, Vol. 37, No. 23, 4940-4942, 2012.
doi:10.1364/OL.37.004940

31. Fukumoto, H., H. Sasaki, D. Lee, and T. Nakagawa, "Beam divergence reduction using dielectric lens for orbital angular momentum wireless communications," International Symposium on Antennas and Propagation IEEE, 680-681, 2Okinawa, Japan, Oct. 016.