Vol. 87
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-09-27
Through the Wall Imaging of Human Vital Signs Based on UWB MIMO Bioradar
By
Progress In Electromagnetics Research C, Vol. 87, 119-133, 2018
Abstract
Through-the-wall imaging (TWI) of human vital signs by bioradar is a hot research topic in recent years. Unknown wall parameters (mainly thickness and dielectric constant) are huge challenges for TWI. Ambiguities in wall parameters will degrade the image focusing quality, lower signal-to-noise-clutter ratio (SNCR) of vital signs, cause vital signs to be imaged away from their true positions and blur the close vital signs from multiple humans caused by the imaging resolution declination. A through-the-wall propagation model of vital signs for multiple-input and multiple-output (MIMO) bioradar is first built to analyze the influence of wall on imaging. In order to obtain focused image of vital signs quickly, an imaging model and a novel autofocusing imaging method of vital signs are proposed in this paper. Since vital signs of human are weak and sensitive to interferences, the SNCR-enhanced imagery of vital signs after change detection (CD) is applied to evaluate the focusing quality of image. Reflections of wall in the stationary targets imaging result are line structure approximately, so Hough transform is used to extract the positions of the front edge and rear edge of wall automatically. Propagation time in the wall of electromagnetic waves is estimated and used to build the constraint relationship of wall parameters. The number of unknown parameters is reduced to only one and the efficiency of autofocusing imaging improves. Several cases, including the case of single human, multiple human objects close to each other and the case of non-human objects, are simulated. The magnetic resonance imaging (MRI) image of human chest is put into simulation scene. And then the simulation data of human vital signs are calculated by the finite-difference time-domain (FDTD) method. The results show that the proposed method can effectively estimate the wall parameters and improve the focusing performance of human vital signs. And also the kurtosis of image can be used as a feature to efficiently decide the human vital signs are existed or not. Thus the SNCR of vital signs and resolution of imaging are improved, which are beneficial for detection of vital signs. The position errors of human vital signs are also corrected.
Citation
Fulai Liang, Miao Liu, Fu Gui Qi, Hao Lv, Hui Jun Xue, Guohua Lu, and Jianqi Wang, "Through the Wall Imaging of Human Vital Signs Based on UWB MIMO Bioradar," Progress In Electromagnetics Research C, Vol. 87, 119-133, 2018.
doi:10.2528/PIERC18062004
References

1. Li, J., L. B. Liu, Z. F. Zeng, and F. S. Liu, "Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped victims in complex environments," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 7, 783-791, 2013.

2. Chen, K. M., D. Misra, H. E. Wang, H. R. Chuang, and E. Postow, "An X-band microwave life-detection system for searching human subjects under earthquake rubble or behind barrier," IEEE Trans. Biomed. Eng., Vol. 47, 105-114, 2000.
doi:10.1109/10.817625

3. Li, Z., W. Z. Li, H. Lv, Y. Zhang, X. J. Jing, and J. Q. Wang, "A novel method for respiration-like clutter cancellation in life detection by dual-frequency IR-UWB radar," IEEE Trans. Microw. Theory Tech., Vol. 61, 2086-2092, 2013.
doi:10.1109/TMTT.2013.2247054

4. Lan, F. Y., L. J. Kong, X. B. Yang, and Y. Jia, "Life-sign detection of through-wall-radar based on fourth-order cumulant," Proceedings of the Radar Conference (RADAR), Xi'an, China, Apr. 14-16, 2013.

5. Ren, L. Y., Y. S. Koo, H. F. Wang, Y. Z. Wang, Q. H. Liu, and A. E. Fathy, "Noncontact multiple heartbeats detection and subject localization using UWB impulse Doppler radar," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 10, 690-692, 2015.
doi:10.1109/LMWC.2015.2463214

6. Wang, F., T. Horng, K. Peng, J. Jau, J. Li, and C. Chen, "Detection ofconcealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 1, 696-704, 2013.
doi:10.1109/TMTT.2012.2228223

7. Liu, L. B. and S. X. Liu, "Remote detection of human vital sign with stepped-frequency continuous wave radar," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 7, 775-782, 2014.
doi:10.1109/JSTARS.2014.2306995

8. Ram, S. S. and A. Majumdar, "High-resolution radar imaging of moving humans using doppler processing and compressed sensing," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 2, 1279-1287, 2015.
doi:10.1109/TAES.2014.140481

9. Hu, J., Y. P. Song, T. Jin, B. Y. Lu, G. F. Zhu, and Z. M. Zhou, "Shadow effect mitigation in indication of moving human behind wall via MIMOTWRI," IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 3, 453-457, 2014.

10. Melamed, R. and N. Chayat, "Apparatus and method for doppler-assisted MIMO radar microwave imaging,", United States Patent Application, 20110237939, US, 2013.

11. Ram, S. S. and A. Majumdar, "Through-wall propagation effects on Doppler-enhanced frontal radar images of humans," IEEE Radar Conference, 1-6, 2016.

12. Wang, F. K., T. S. Horng, K. C. Peng, J. K. Jau, J. Y. Li, and C. C. Chen, "Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 1, 696-704, 2013.
doi:10.1109/TMTT.2012.2228223

13. Hunt, A. R., "Use of a frequency-hopping radar for imaging and motion detection through walls," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1402-1408, 2009.
doi:10.1109/TGRS.2009.2016084

14. Liang, F. L., F. G. Qi, Q. An, H. Lv, F. M. Chen, Z. Li, and J. Q. Wang, "Detection of multiple stationary humans using UWB MIMO radar," Sensors, Vol. 16, No. 11, 2016.

15. Qu, Y., G. Liao, S.-Q. Zhu, X.-Y. Liu, and H. Jiang, "Performance analysis of beamforming for MIMO radar," Progress In Electromagnetics Research, Vol. 84, 123-134, 2008.
doi:10.2528/PIER08062306

16. Zhuge, X. D. and A. G. Yarovoy, "Study on two-dimensional sparse MIMO UWB arrays for high resolution near-field imaging," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4173-4182, 2012.
doi:10.1109/TAP.2012.2207031

17. Muqaibel, A. H. and A. Safaai-Jazi, "A new formulation for characterization of materials based on measured insertion transfer function," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 8, 1946-1951, 2003.
doi:10.1109/TMTT.2003.815274

18. Muqaibel, A. H., A. Safaai-Jazi, A. Bayram, A. M. Attiya, and S. M. Riad, "Ultrawideband through-the-wall propagation," IEE Proc. Microw. Antennas Propag., Vol. 152, No. 6, 581-588, 2005.
doi:10.1049/ip-map:20050092

19. Jin, T., B. Chen, and Z. M. Zhou, "Image-domain estimation of wall parameters for autofocusing of through-the-wall SAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 3, 1836-1843, 2013.
doi:10.1109/TGRS.2012.2206395

20. Wang, G. Y. and M. G. Amin, "Imaging through unknown walls using different standoff distances," IEEE Transactions on Signal Processing, Vol. 54, No. 10, 4015-4025, 2006.
doi:10.1109/TSP.2006.879325

21. Ahmad, F., M. G. Amin, and G. Mandapati, "Autofocusing of through-the-wall radar imagery under unknown wall characteristics," IEEE Trans. Image Process., Vol. 16, No. 7, 1785-1795, 2007.
doi:10.1109/TIP.2007.899030

22. Al-Qadi, I. L. and S. Lahouar, "Measuring layer thicknesses with GPR theory to practice," Construction and Building Materials, Vol. 19, No. 10, 763-772, 2005.
doi:10.1016/j.conbuildmat.2005.06.005

23. Aftanas, M., J. Rovnakova, M. Drutarovsky, and D. Kocur, "Efficient method of TOA estimation for through wall imaging by UWB radar," Proc. Int. Conf. Ultrawideband, 101-104, 2008.

24. Amin, M. G. and F. Ahmad, "Change detection analysis of humans moving behind walls," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 3, 1410-1425, 2013.
doi:10.1109/TAES.2013.6557995

25. Liang, F. L., M. Liu, H. N. Li, F. G. Qi, Z. Li, and J. Q.Wang, "Through-the-wall imagery of human vital signs using UWB MIMO bioradar," 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 924-927, Chengdu, China, Dec. 15-17, 2017.

26. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies ,", Technical Report, 78235-5102, Brooks Air Force Base, Texas, 1996.