Vol. 88
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-11-07
Hybrid Inductive Power Transfer and Wireless Antenna System for Biomedical Implanted Devices
By
Progress In Electromagnetics Research C, Vol. 88, 77-88, 2018
Abstract
In this paper, we present a hybrid system consisting of a novel design of a microstrip antenna that can be designed to resonate at various frequencies within the ultra-high frequency (UHF) band (e.g. 415 MHz, 905 MHz, and 1300 MHz), combined with a pair of high frequency (HF) coils (13.56 MHz). The system is designed to be fabricated on an FR4 substrate layer, and it provides a compact solution for simultaneous wireless power transfer (WPT) and multi-band wireless communication, to be utilized in implanted medical devices. The external antenna/coil combination (EX) will be located outside the body on the skin layer. The EX has 79.6 mm-diameter. The implanted hybrid combination (IM) has 31.5 mm diameter. The antenna is designed such that by varying the position of a shorting pin the resonance frequency can be switched among three frequencies; therefore, the same design can be used for various applications. The system was designed using numerical simulation tools, and then it was fabricated and measured. The design was optimized while the performance of the system was numerically simulated at various depths inside a layered body model. Furthermore, the insertion loss (S21) and transmission efficiency (η) for both antenna and coil pairs at different depths were studied through simulation and measurements. The system provides a good solution for the combination of power transfer and multi-band data communication.
Citation
Reem Shadid, Mohammad Haerinia, Sayan Roy, and Sima Noghanian, "Hybrid Inductive Power Transfer and Wireless Antenna System for Biomedical Implanted Devices," Progress In Electromagnetics Research C, Vol. 88, 77-88, 2018.
doi:10.2528/PIERC18061604
References

1. Clark, G., Cochlear Implants: Fundamentals and Applications, 2003.
doi:10.1007/b97263

2. Weiland, J. D. and M. S. Humayun, "Retinal prosthesis," IEEE Trans. Biomed. Eng., Vol. 61, No. 5, 1412-1424, 2014.
doi:10.1109/TBME.2014.2314733

3. Ahmadi, M. M. and G. A. Jullien, "A wireless-implantable microsystem for continuous blood glucose monitoring," IEEE Trans. Biomed. Circuits Syst., Vol. 3, No. 3, 169-180, 2009.
doi:10.1109/TBCAS.2009.2016844

4. Xie, L., Y. Shi, Y. T. Hou, and A. Lou, "Wireless power transfer and applications to sensor networks," IEEE Wirel. Commun., Vol. 20, No. 4, 140-145, 2013.
doi:10.1109/MWC.2013.6590061

5. Xie, L., Y. Shi, Y. T. Hou, and H. D. Sherali, "Making sensor networks immortal: An energy-renewal approach with wireless power transfer," IEEE/ACM Trans. Netw., 1350-1358, 2012.

6. Chaloupka, H., N. Klein, M. Peiniger, H. Piel, A. Pischke, and G. Splitt, "Miniaturized high-temperature superconductor microstrip patch antenna," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 9, 1513-1521, 1991.
doi:10.1109/22.83826

7. Chair, R., K. M. Luk, and K. F. Lee, "Small dual patch antenna," Electron. Lett., Vol. 35, No. 10, 762, 1999.
doi:10.1049/el:19990530

8. Chiu, C. Y., C. H. Chan, and K. M. Luk, "Small dual-band antenna with folded-patch technique," IEEE Antennas Wirel. Propag. Lett., Vol. 3, No. 1, 108-110, 2004.
doi:10.1109/LAWP.2004.830025

9. Yu, X., G. Li, and Z. Wang, "Design of compact 2.45 GHz microstrip antenna," 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Vol. 1, 153-156, 2005.

10. Sharma, A., E. Kampianakis, and M. S. Reynolds, "A dual-band HF and UHF antenna system for implanted neural recording and stimulation devices," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 493-496, 2017.
doi:10.1109/LAWP.2016.2585650

11. Institute of applied physics (IFAC), [Online], , Available: http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.

12. Ansys, Inc., [Online], Available: www.ansoft.com.

13. Thakare, V. V., P. Singhal, and K. Das, "Calculation of Microstrip antenna bandwidth using Artificial Neural Network," 2008 IEEE Int. RF Microw. Conf., 404-406, 2008.
doi:10.1109/RFM.2008.4897355

14. Shadid, R. and S. Noghanian, "Hybrid power transfer and wireless antenna system design for biomedical implanted devices," ACES Conference in Denver, 2018.

15. Shadid, R. and S. Noghanian, "A literature survey on wireless power transfer for biomedical devices," Int. J. Antennas Propag., Vol. 2018, No. 5, 1-11, 2018.
doi:10.1155/2018/4382841

16. International Commission on Non-Ionizing Radiation Protection "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 75, No. 5, 535, 1998.

17. Yilmaz, T., R. Foster, and Y. Hao, "Broadband tissue mimicking phantoms and a patch resonator for evaluating noninvasive monitoring of blood glucose levels," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3064-3075, 2014.
doi:10.1109/TAP.2014.2313139