Vol. 86
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-07-25
Design Technique for Varactor Analog Phase Shifters with Equalized Losses
By
Progress In Electromagnetics Research C, Vol. 86, 1-16, 2018
Abstract
The paper presents a novel design technique for reflection-type varactor analog phase shifters based on tunable reflective loads. The reflective load comprises two similar tuning stubs with incorporated varactor diodes, where each varactor can be tuned independently. It is shown that by an appropriate losses equalization method applied together with a specific independent varactors control algorithm it is possible to achieve the desired 360° phase shift with stabilized losses, which are significantly lower compared to the well-known single-channel design. We derive and discuss in details main design relations arisen from the complex plane reflection coefficient consideration. The presented technique is first verified by circuit simulation in ADS, and comparison with the classical single-channel design is also considered. Next, we develop experimental prototypes of a reflective load and a full phase shifter based on a packaged silicon varactor diode for operation in C-band with 5.8 GHz central frequency. Experimental and theoretical results are in perfect agreement. Moreover, we have found that the bandwidth of the proposed phase shifter can be greatly enhanced if the reflective loads are tuned at each sub-band using a unique optimal tuning path. The suggested reflective load demonstrates the total bandwidth of 10.3% and the instantaneous bandwidth of 1.7% (sub-band), where inside each sub-band measured ripple at the central frequency is around 0.5 dB, and the maximum overall ripple is below 0.8 dB.
Citation
Artem R. Vilenskiy, Mikhail N. Makurin, Ekaterina I. Poshisholina, and Chongmin Lee, "Design Technique for Varactor Analog Phase Shifters with Equalized Losses," Progress In Electromagnetics Research C, Vol. 86, 1-16, 2018.
doi:10.2528/PIERC18060504
References

1. Chakraborty, A. and B. Gupta, "Paradigm phase shift," IEEE Microwave Magazine, Vol. 18, No. 1, 22-41, Jan.-Feb. 2017.
doi:10.1109/MMM.2016.2616155

2. Wang, Z. G., B. Yan, R. M. Xu, and Y. C. Guo, "Design of Ku band six bit phase shifter using periodically loaded-line and switched-line with loaded-line," Progress In Electromagnetics Research, Vol. 76, 369-379, 2017.

3. Semernya, R. E., A. R. Vilenskiy, V. I. Litun, and S. L. Chernyshev, "Design approach for microstrip PIN-diode phase shifters with equalized losses," 2017 Progress In Electromagnetics Research Symposium --- Spring (PIERS), 3835-3841, St Petersburg, Russia, May 22-25, 2017.

4. Mohajer, M., M. Faraji-Dana, and S. Safavi-Naeini, "Effects of resonance-based phase shifters on Ka-Band phased array antenna performance for satellite communications," Progress In Electromagnetics Research B, Vol. 60, 259-274, 2014.
doi:10.2528/PIERB14060906

5. Vendik, O. G. and M. Parnes, "A phase shifter with one tunable component for a reflectarray antenna," IEEE Antennas and Propagation Magazine, Vol. 50, No. 4, 53-65, Aug. 2008.
doi:10.1109/MAP.2008.4653662

6. Hum, S. V., M. Okoniewski, and R. J. Davies, "Realizing an electronically tunable reflectarray using varactor diode-tuned elements," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 6, 422-424, Jun. 2005.
doi:10.1109/LMWC.2005.850561

7. Natarajan, A., et al. "W-Band dual-polarization phased-array transceiver front-end in SiGe BiCMOS," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 6, 422-424, Jun. 2015.
doi:10.1109/TMTT.2015.2422691

8. Megej, A. and V. F. Fusco, "Low-loss analog phase shifter using varactor diodes," Microwave and Optical Technology Letters, Vol. 19, No. 6, 384-386, Dec. 1998.
doi:10.1002/(SICI)1098-2760(19981220)19:6<384::AID-MOP2>3.0.CO;2-F

9. Garver, R. V., "360◦ varactor linear phase modulator," IEEE Transactions on Microwave Theory and Techniques, Vol. 17, No. 3, 137-147, Mar. 1969.
doi:10.1109/TMTT.1969.1126912

10. Niehenke, E. C., V. V. DiMarco, and A. Friedberg, "Linear analog hyperabrupt varactor diode phase shifters," IEEE International Microwave Symposium Digest, 657-660, 1985.
doi:10.1109/MWSYM.1985.1132067

11. Lin, C., S. Chang, C. Chang, and Y. Shu, "Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 9, 1862-1868, Sept. 2007.
doi:10.1109/TMTT.2007.903346

12. Lin, C., S. Chang, and W. Hsiao, "A full-360 reflection-type phase shifter with constant insertion loss," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 2, 106-108, Feb. 2008.
doi:10.1109/LMWC.2007.915094

13. Abbosh, A. M., "Compact tunable phase shifters using short section of coupled lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2465-2472, Aug. 2012.
doi:10.1109/TMTT.2012.2198232

14. Liu, W. J., et al. "A wideband tunable reflection-type phase shifter with wide relative phase shift," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 64, No. 12, 1442-1446, Dec. 2017.
doi:10.1109/TCSII.2017.2650946

15. Henoch, B. T. and P. Tamm, "360 reflection-type diode phase modulator," IEEE Transactions on Microwave Theory and Techniques, Vol. 19, No. 1, 103-105, Jan. 1971.
doi:10.1109/TMTT.1971.1127456

16. Ulriksson, B., "Continuous varactor-diode phase shifter with optimized frequency response," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, No. 7, 650-654, Jul. 1979.
doi:10.1109/TMTT.1979.1129695

17. Xiao, M. X., S. W. Cheung, and T. I. Yuk, "A C-band wideband 360◦ analog phase shifter design," Microwave and Optical Technology Letters, Vol. 52, No. 2, 355-359, Feb. 2010.
doi:10.1002/mop.24938

18. Burdin, F., Z. Iskandar, F. Podevin, and P. Ferrari, "Design of compact reflection-type phase shifters with high figure-of-merit," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 6, 1883-1893, Jun. 2015.
doi:10.1109/TMTT.2015.2428242

19. Vilenskiy, A. R. and M. V. Makurin, "Analog varactor phase shifter," 2017 Progress In Electromagnetics Research Symposium --- Spring (PIERS), 3820-3825, St Petersburg, Russia, May 22-25, 2017.

20. Garg, R. and A. S. Natarajan, "A 28-GHz low-power phased-array receiver front-end with 360◦ RTPS phase shift range," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4703-4714, Nov. 2017.
doi:10.1109/TMTT.2017.2707414

21. Krantz, S. G., "Linear fractional transformations," Handbook of Complex Variables, 81-86, Boston, MA, USA, Birkhäuser, 1999.

22. Öjefors, E., et al. "Electrically steerable single-layer microstrip traveling wave antenna with varactor diode based phase shifters," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 9, 2451-2460, Sept. 2017.
doi:10.1109/TAP.2007.904104

23. Norwood, M. H. and E. Shatz, "Voltage variable capacitor tuning: A review," Proceedings of IEEE, Vol. 56, No. 5, 788-798, May 1968.
doi:10.1109/PROC.1968.6408

24. Mehlhorn, K. and P. Sanders, "Shortest paths," Algorithms and Data Structures: The Basic Toolbox, 196-200, Springer-Verlag, Berlin, Germany, 2008.