Vol. 86
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-08-23
B 2-Spline Interpolation Technique for Overset Grid Generation and Finite-Difference Time-Domain Method
By
Progress In Electromagnetics Research C, Vol. 86, 177-190, 2018
Abstract
In this paper, B2-spline interpolation technique for Overset Grid Generation (OGG) and Finite-Difference Time-Domain (FDTD) method is developed. B2-spline or biquadratic spline interpolation offers better accuracy compared to the bilinear interpolation. The two-dimensional (2-D) numerical simulations are carried out for electromagnetic (EM) field analysis to measure the scattered fields for an unknown object in a free space and a dielectric medium. There are 2 antennas utilized in this work, each antenna will become transmitter sequentially to transmit a microwave pulses while another acts as receiver to collect the scattered fields in the OGG-FDTD lattice. In order to analyse the efficiency of proposed method, the scattered fields that collected by receiver antenna will be investigated with relative error. The results show that OGG-FDTD method with B2-spline interpolation gives lower relative error than bilinear interpolation with 0.0009% differences in a free space and 0.0033% differences in a dielectric medium. Hence, it proves that OGG-FDTD method with B2-spline interpolation has ability to measure the scattered fields around the unknown object efficiently. For future work, the proposed method can be applied to inverse scattering for detection and reconstruction of the buried objects with arbitrary shapes in a complex media.
Citation
Bong Siaw Wee, Shafrida Sahrani, and Kismet Anak Hong Ping, "B 2-Spline Interpolation Technique for Overset Grid Generation and Finite-Difference Time-Domain Method," Progress In Electromagnetics Research C, Vol. 86, 177-190, 2018.
doi:10.2528/PIERC18052404
References

1. Mahajan, S. H. and V. K. Harpale, "Adaptive and non-adaptive image interpolation techniques," International Conference on Computing Communication Control and Automation (ICCUBEA), IEEE, 772-775, 2015.

2. Sinha, A., M. Kumar, A. K. Jaiswal, and R. Saxena, "Performance analysis of high resolution images using interpolation techniques in multimedia communication system," Signal & Image Processing, Vol. 5, No. 2, 39, 2014.

3. Gupta, R. B., B. G. Lee, and J. J. Lee, "A new image interpolation technique using exponential B-spline,", 2007.

4. Singh, M. R. and A. S. Bhide, "A review of image retrieval using different types of interpolation techniques," International Research Journal of Engineering and Technology (IRJET), Vol. 3, No. 12, 1423-1426, 2016.

5. Moler, C. B., Numerical Computing with MATLAB2004, Society for Industrial and Applied Mathematics, 2004.
doi:10.1137/1.9780898717952

6. Szabados, J. and P. Vértesi, Interpolation of Functions, World Scientific, 1990.
doi:10.1142/0861

7. Acharya, T. and A. K. Ray, Image Processing: Principles and Applications, John Wiley & Sons, 2005.
doi:10.1002/0471745790

8. Lehmann, T. M., C. Gonner, and K. Spitzer, "Survey: Interpolation methods in medical image processing," IEEE Transactions on Medical Imaging, Vol. 18, No. 11, 1049-1075, 1999.
doi:10.1109/42.816070

9. Jiang, N. and J. Wang, "Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio," Quantum Information Processing, Vol. 14, No. 11, 4001-4026, 2015.
doi:10.1007/s11128-015-1099-5

10. Warbhe, S. and J. Gomes, "Interpolation technique using non-linear partial differential equation with edge directed bicubic," International Journal of Image Processing (IJIP), Vol. 10, No. 4, 205, 2016.

11. Iwamatsu, H., R. Fukumoto, M. Ishihara, and M. Kuroda, "Comparative study of over set grid generation method and body fitted grid generation method with moving boundaries," Antennas and Propagation Society International Symposium, AP-S 2008. IEEE, 1-4, 2008.

12. Spath, H., Two Dimensional Spline Interpolation Algorithms, 1-68, United States of America: A K Peters, Wellesley, Massachusetts, 1995.

13. Han, D. Y., "Comparison of commonly used image interpolation methods," Proceedings of the 2nd International Conference on Computer Science and Electronics Engineerings (ICCSEE), 1556-1559, 2013.

14. Xia, P., T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, "Performance comparison of bilinear interpolation, bicubic interpolation, and B-spline interpolation in parallel phase-shifting digital holography," Optical Review, Vol. 20, No. 2, 193-197, 2013.
doi:10.1007/s10043-013-0033-2

15. Sinha, A., "Study of interpolation techniques in multimedia communication system-a review,", 2015.

16. Azman, A., S. Sahrani, K. H. Ping, and D. A. A. Mat, "A new approach for solving inverse scattering problems with overset grid generation method," TELKOMNIKA (Telecommunication Computing Electronics and Control), Vol. 15, No. 1, 820-828, 2017.
doi:10.12928/telkomnika.v15i1.6127

17. Kaur, K., I. Kaur, and J. Kaur, "Survey on image interpolation," International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 6, No. 5, 613-616, 2016.

18. Patel, V. and K. Mistree, "A review on different image interpolation techniques for image enhancement," International Journal of Emerging Technology and Advanced Engineering (IJETAE), Vol. 3, 129-133, 2013.

19. Boor, C. D., A Practical Guide to Spline, Springer-Verlag, 1978.
doi:10.1007/978-1-4612-6333-3

20. Schumaker, L. L., Spline Functions: Computational Methods, Society for industrial and applied mathematics (SIAM), 2015.
doi:10.1137/1.9781611973907

21. Thompson, J. F., Z. U. Warsi, and C. W. Mastin, Numerical Grid Generation: Foundations and Applications, 45, North-holland Amsterdam, 1985.

22. Thompson, J. F., B. K. Soni, and N. P. Weatherill, Handbook of Grid Generation, CRC Press, 1998.
doi:10.1201/9781420050349

23. Castillon, L. and G. Legras, "Overset Grid Method for simulation of compressors with nonaxisymmetric casing treatment," Journal of Propulsion and Power, Vol. 29, No. 2, 460-465, 2013.
doi:10.2514/1.B34613

24. Renaud, T., A. L. Pape, and S. Péron, "Numerical analysis of hub and fuselage drag breakdown of a helicopter configuration," CEAS Aeronautical Journal, Vol. 4, No. 4, 409-419, 2013.
doi:10.1007/s13272-013-0081-0

25. Castillon, L., G. Billonnet, J. Riou, S. Péron, and C. Benoit, "A technological effect modeling on complex turbomachinery applications with an overset grid numerical method," Journal of Turbomachinery, Vol. 136, No. 10, 101005, 2014.
doi:10.1115/1.4027997

26. Wiart, L., O. Atinault, D. Hue, R. Grenon, and B. Paluch, "Development of NOVA aircraft configurations for large engine integration studies," 33rd AIAA Applied Aerodynamics Conference, 2015.

27. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations op mathematical physics," Mathematische Annalen, Vol. 100, No. 1, 32-74, 1928.
doi:10.1007/BF01448839