1. Keller, J. B., "Diffraction of a convex cylinder," IEEE Trans. Antennas Propag., Vol. 4, No. 3, 312-321, 1956.
doi:10.1109/TAP.1956.1144427
2. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116
3. Wu, T. T., "High frequency scattering," Phys. Rev., Vol. 104, 1201-1212, Dec. 1956.
doi:10.1103/PhysRev.104.1201
4. Honl, H., A. W. Maue, and K. Westpfahl, Theory of Diffraction, Springer-Verlag, 1961.
5. Pathak, P. H., W. D. Burnside, and R. J. Marhefka, "A uniform gtd analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 28, No. 5, 631-642, 1980.
doi:10.1109/TAP.1980.1142396
6. Hussar, P. and R. Albus, "On the asymptotic frequency behavior of uniform GTD in the shadow region of a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 39, No. 12, 1672-1680, 1991.
doi:10.1109/8.121587
7. Paknys, R., "On the accuracy of the UTD for the scattering by a cylinder," IEEE Trans. Antennas Propag., Vol. 42, No. 5, 757-760, 1994.
doi:10.1109/8.299580
8. Yaghjian, A. D., R. A. Shore, and M. B. Woodworth, "Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces," Radio Sci., Vol. 31, No. 6, 1681-1695, Nov.-Dec. 1996.
doi:10.1029/96RS02276
9. Hansen, T. B. and R. A. Shore, "Incremental length diffraction coefficients for the shadow boundary of a convex cylinder ," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1458-1466, Oct. 1998.
doi:10.1109/8.725277
10. Shore, R. A. and A. D. Yaghjian, "Shadow boundary incremental length diffraction coefficients applied to scattering from 3-D bodies," IEEE Trans. Antennas Propag., Vol. 49, No. 2, 200-210, Feb. 2001.
doi:10.1109/8.914277
11. Kim, H. T. and N. Wang, "UTD solution for electromagnetic scattering by a circular cylinder with thin lossy coatings," IEEE Trans. Antennas Propag., Vol. 37, No. 11, 1463-1472, 1989.
doi:10.1109/8.43566
12. Brick, Y., V. Lomakin, and A. Boag, "Fast direct solver for essentially convex scatterers using multilevel non-uniform grids," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4314-4324, 2014.
doi:10.1109/TAP.2014.2327651
13. Syed, H. H. and J. L. Volakis, "High-frequency scattering by a smooth coated cylinder simulated with generalized impedance boundary conditions ," Radio Sci., Vol. 26, No. 5, 1305-1314, 1991.
doi:10.1029/91RS00999
14. Chen, X., S. Y. He, D. F. Yu, H. C. Yin, W. D. Hu, and G. Q. Zhu, "Geodesic computation on NURBS surfaces for UTD analysis," IEEE Antenn. Wirel. Pr., Vol. 12, 194-197, 2013.
doi:10.1109/LAWP.2013.2245291
15. Tokgoz, C. and R. J. Marhefka, "A UTD based asymptotic solution for the surface magnetic field on a source excited circular cylinder with an impedance boundary condition," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1750-1757, 2006.
doi:10.1109/TAP.2006.875490
16. Ruan, Y. C., X. Y. Zhou, J. Y. Chin, T. J. Cui, Y. B. Tao, and H. Lin, "The UTD analysis to EM scattering by arbitrarily convex objects using ray tracing of creeping waves on numerical meshes," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, 2008.
17. Fock, V. A., Electromagnetic Diffraction and Propagation Problems, Pergamon, 1965.
18. Hussar, P. E., "A uniform GTD treatment of surface diffraction by impedance and coated cylinders," IEEE Trans. Antennas Propag., Vol. 46, No. 7, 998-1008, 1998.
doi:10.1109/8.704801
19. Wu, Y., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308
20. Wu, Y. M., L. J. Jiang, and W. C. Chew, "Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method," J. Comput. Phys., Vol. 236, 408-425, Mar. 2013.
doi:10.1016/j.jcp.2012.10.052
21. Wu, Y. M., L. J. Jiang, W. E. I. Sha, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, Aug. 2013.
doi:10.1109/TAP.2013.2259788
22. Wu, Y. M., L. J. Jiang, W. C. Chew, and Y. Q. Jin, "The contour deformation method for calculating the high-frequency scattered field by the Fock current on the surface of the 3-D convex cylinder," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2180-2190, 2015.
doi:10.1109/TAP.2015.2407411
23. Wu, Y.M., W. C. Chew, Y. Q. Jin, L. J. Jiang, H. Ye, and W. E. I. Sha, "A frequency-independent method for computing the physical optics-based electromagnetic fields scattered from a hyperbolic surface," IEEE Trans. Antennas Propag., Vol. 64, No. 4, 1546-1552, 2016.
doi:10.1109/TAP.2016.2526065
24. Pearson, L. W., "A scheme for automatic computation of fock-type integrals," IEEE Trans. Antennas Propag., Vol. 35, No. 10, 1111-1118, 1987.
doi:10.1109/TAP.1987.1143985
25. Aguilar, A. G., P. H. Pathak, and M. Sierra-Perez, "A canonical UTD solution for electromagnetic scattering by an electrically large impedance circular cylinder illuminated by an obliquely incident plane wave," IEEE Trans. Antennas Propag., Vol. 61, No. 10, 5144-5154, 2013.
doi:10.1109/TAP.2013.2274691
26. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
27. Jin, J. M., Theory and Computation of Electromagnetic Fields, Wiley, 2010.
doi:10.1002/9780470874257
28. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651
29. Senior, T. B. A., "Approximate boundary conditions," IEEE Trans. Antennas Propag., Vol. 29, No. 5, 826-829, 1981.
doi:10.1109/TAP.1981.1142657
30. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, Institution of Engineering and Technology, 1995.
doi:10.1049/PBEW041E