Vol. 86
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-08-31
An Efficient Numerical Technique to Calculate the High Frequency Diffracted Fields from the Convex Scatterers with the Fock-Type Integrals
By
Progress In Electromagnetics Research C, Vol. 86, 203-215, 2018
Abstract
High frequency electromagnetic (EM) scattering analysis from the electrically large scatterers is important to the computational electromagnetics community. Meanwhile, the high frequency diffraction technique, like the uniform geometrical theory of diffraction (UTD), is very important when the observation point lies in the transition, shadow and deep shadow regions of the considered scatterer. Furthermore, the diffracted fields arising from the electrically large scatterers via the UTD technique are usually highly oscillatory in nature, which is named as the Fock type integrals with the Airy function and its derivative involved. In this work, we propose a Fourier quadrature method to calculate the Pekeris integrals. Moreover, we first adopt the Fourier quadrature technique to calculate the diffracted fields from the dielectric convex cylinder with impedance boundary conditions, like the creeping wave fields and NU-diffracted wave fields. On invoking the Fourier quadrature method, the results of total scattered fields at the fixed observation points could achieve 1 dB relative errors. Moreover, numerical results demonstrate that the computational efforts for the oscillatory Pekeris-integrals are independent of wave frequency with the fixed sampling density and integration limit.
Citation
Yang Yang, Yu Mao Wu, Ya-Qiu Jin, Haijing Zhou, Yang Liu, and Jianli Wang, "An Efficient Numerical Technique to Calculate the High Frequency Diffracted Fields from the Convex Scatterers with the Fock-Type Integrals," Progress In Electromagnetics Research C, Vol. 86, 203-215, 2018.
doi:10.2528/PIERC18042202
References

1. Keller, J. B., "Diffraction of a convex cylinder," IEEE Trans. Antennas Propag., Vol. 4, No. 3, 312-321, 1956.
doi:10.1109/TAP.1956.1144427

2. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, No. 2, 116-130, 1962.
doi:10.1364/JOSA.52.000116

3. Wu, T. T., "High frequency scattering," Phys. Rev., Vol. 104, 1201-1212, Dec. 1956.
doi:10.1103/PhysRev.104.1201

4. Honl, H., A. W. Maue, and K. Westpfahl, Theory of Diffraction, Springer-Verlag, 1961.

5. Pathak, P. H., W. D. Burnside, and R. J. Marhefka, "A uniform gtd analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 28, No. 5, 631-642, 1980.
doi:10.1109/TAP.1980.1142396

6. Hussar, P. and R. Albus, "On the asymptotic frequency behavior of uniform GTD in the shadow region of a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 39, No. 12, 1672-1680, 1991.
doi:10.1109/8.121587

7. Paknys, R., "On the accuracy of the UTD for the scattering by a cylinder," IEEE Trans. Antennas Propag., Vol. 42, No. 5, 757-760, 1994.
doi:10.1109/8.299580

8. Yaghjian, A. D., R. A. Shore, and M. B. Woodworth, "Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces," Radio Sci., Vol. 31, No. 6, 1681-1695, Nov.-Dec. 1996.
doi:10.1029/96RS02276

9. Hansen, T. B. and R. A. Shore, "Incremental length diffraction coefficients for the shadow boundary of a convex cylinder ," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1458-1466, Oct. 1998.
doi:10.1109/8.725277

10. Shore, R. A. and A. D. Yaghjian, "Shadow boundary incremental length diffraction coefficients applied to scattering from 3-D bodies," IEEE Trans. Antennas Propag., Vol. 49, No. 2, 200-210, Feb. 2001.
doi:10.1109/8.914277

11. Kim, H. T. and N. Wang, "UTD solution for electromagnetic scattering by a circular cylinder with thin lossy coatings," IEEE Trans. Antennas Propag., Vol. 37, No. 11, 1463-1472, 1989.
doi:10.1109/8.43566

12. Brick, Y., V. Lomakin, and A. Boag, "Fast direct solver for essentially convex scatterers using multilevel non-uniform grids," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4314-4324, 2014.
doi:10.1109/TAP.2014.2327651

13. Syed, H. H. and J. L. Volakis, "High-frequency scattering by a smooth coated cylinder simulated with generalized impedance boundary conditions ," Radio Sci., Vol. 26, No. 5, 1305-1314, 1991.
doi:10.1029/91RS00999

14. Chen, X., S. Y. He, D. F. Yu, H. C. Yin, W. D. Hu, and G. Q. Zhu, "Geodesic computation on NURBS surfaces for UTD analysis," IEEE Antenn. Wirel. Pr., Vol. 12, 194-197, 2013.
doi:10.1109/LAWP.2013.2245291

15. Tokgoz, C. and R. J. Marhefka, "A UTD based asymptotic solution for the surface magnetic field on a source excited circular cylinder with an impedance boundary condition," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1750-1757, 2006.
doi:10.1109/TAP.2006.875490

16. Ruan, Y. C., X. Y. Zhou, J. Y. Chin, T. J. Cui, Y. B. Tao, and H. Lin, "The UTD analysis to EM scattering by arbitrarily convex objects using ray tracing of creeping waves on numerical meshes," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, 2008.

17. Fock, V. A., Electromagnetic Diffraction and Propagation Problems, Pergamon, 1965.

18. Hussar, P. E., "A uniform GTD treatment of surface diffraction by impedance and coated cylinders," IEEE Trans. Antennas Propag., Vol. 46, No. 7, 998-1008, 1998.
doi:10.1109/8.704801

19. Wu, Y., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308

20. Wu, Y. M., L. J. Jiang, and W. C. Chew, "Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method," J. Comput. Phys., Vol. 236, 408-425, Mar. 2013.
doi:10.1016/j.jcp.2012.10.052

21. Wu, Y. M., L. J. Jiang, W. E. I. Sha, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, Aug. 2013.
doi:10.1109/TAP.2013.2259788

22. Wu, Y. M., L. J. Jiang, W. C. Chew, and Y. Q. Jin, "The contour deformation method for calculating the high-frequency scattered field by the Fock current on the surface of the 3-D convex cylinder," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2180-2190, 2015.
doi:10.1109/TAP.2015.2407411

23. Wu, Y.M., W. C. Chew, Y. Q. Jin, L. J. Jiang, H. Ye, and W. E. I. Sha, "A frequency-independent method for computing the physical optics-based electromagnetic fields scattered from a hyperbolic surface," IEEE Trans. Antennas Propag., Vol. 64, No. 4, 1546-1552, 2016.
doi:10.1109/TAP.2016.2526065

24. Pearson, L. W., "A scheme for automatic computation of fock-type integrals," IEEE Trans. Antennas Propag., Vol. 35, No. 10, 1111-1118, 1987.
doi:10.1109/TAP.1987.1143985

25. Aguilar, A. G., P. H. Pathak, and M. Sierra-Perez, "A canonical UTD solution for electromagnetic scattering by an electrically large impedance circular cylinder illuminated by an obliquely incident plane wave," IEEE Trans. Antennas Propag., Vol. 61, No. 10, 5144-5154, 2013.
doi:10.1109/TAP.2013.2274691

26. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

27. Jin, J. M., Theory and Computation of Electromagnetic Fields, Wiley, 2010.
doi:10.1002/9780470874257

28. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

29. Senior, T. B. A., "Approximate boundary conditions," IEEE Trans. Antennas Propag., Vol. 29, No. 5, 826-829, 1981.
doi:10.1109/TAP.1981.1142657

30. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, Institution of Engineering and Technology, 1995.
doi:10.1049/PBEW041E