Vol. 85
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-07-16
Influence of Rotor Magnet Shapes on Performance of Axial Flux Permanent Magnet Machines
By
Progress In Electromagnetics Research C, Vol. 85, 155-165, 2018
Abstract
Axial flux Permanent Magnet (AFPM) machines, due to its high torque capability, high power density and compact size, are the most suitable candidates for in-wheel Electric Vehicle application. However, the presence of cogging torque in AFPM machines, resulting from the interaction of PMs and stator slots, introduces torque ripples, noise and vibrations which deteriorates the performance of the machine. To overcome this, several techniques for cogging reduction are utilized. Out of various techniques, rotor magnet shape variation is most commonly utilized. This paper investigates the effect of some preferred magnet shaping techniques in AFPM machines on several performance parameters such as magnetic flux density distribution in air gap, cogging torque, flux linkage, no load-induced emf, emf harmonics, electromagnetic torque and torque ripple. These parameters were analyzed using 3-D Finite Element Method (FEM) based simulations. It was found that a maximum cogging reduction by 62.49% and output torque ripple by 63.25% were obtained by using short-pitched and skewed rotor magnets. This also resulted in a reduction of induced emf by 14.18% and electromagnetic torque by 15.17%.
Citation
Praveen Kumar, and Rakesh Kumar Srivastava, "Influence of Rotor Magnet Shapes on Performance of Axial Flux Permanent Magnet Machines," Progress In Electromagnetics Research C, Vol. 85, 155-165, 2018.
doi:10.2528/PIERC18041909
References

1. Zhu, Z. Q. and D. Howe, "Influence of design parameters on cogging torque in permanent magnet motors," IEEE Trans. Energy Convers., Vol. 15, No. 4, 407-412, Dec. 2000.
doi:10.1109/60.900501

2. Bianchi, N. and S. Bolognani, "Design techniques for reducing the cogging torque in surface-mounted PM motors," IEEE Trans. Ind. Appl., Vol. 38, No. 2, 1259-1265, Sep./Oct. 2002.

3. Aydin, M., "Magnet skew in cogging torque minimization of axial gap permanent magnet motors," Proc. IEEE ICEM, 1-6, Vilamoura, Portugal, Sep. 2008.

4. Wanjiku, J., M. A. Khan, P. S. Barendse, and P. Pillay, "Influence of slot openings and tooth profile on cogging torque in axial-flux PM machines," IEEE Trans. Ind. Electron., Vol. 62, No. 12, 7578-7589, Dec. 2015.
doi:10.1109/TIE.2015.2458959

5. Aydin, M., Z. Q. Zhu, T. A. Lipo, and D. Howe, "Minimization of cogging torque in axial flux permanent magnet machines --- Design concepts," IEEE Trans. Magn., Vol. 43, No. 9, 3614-3622, Sep. 2007.
doi:10.1109/TMAG.2007.902818

6. Ocak, C., I. Tarımer, and A. Dalcalı, "Advancing pole arc offset points in designing an optimal PM generator," TEM Journal, Vol. 5, No. 2, 126-132, 2016.

7. Ocak, C., I. Tarımer, A. Dalcalı, and D. Uygun, "Investigation effects of narrowing rotor pole embrace to efficiency and cogging torque at PM BLDC motor," TEM Journal, Vol. 5, No. 1, 25-31, 2016.

8. Libert, F. and J. Soulard, "Investigation on pole-slot combinations for permanent-magnet machines with concentrated windings," Proc. IEEE ICEM, 5-8, Cracow, Poland, Sep. 2004.

9. Guemes, J. A., A. M. Iraolagoitia, P. Fernandez, and M. P. Donsion, "Comparative study of PMSM with integer-slot and fractional-slot windings," 2010 XIX International Conference on Electrical Machines (ICEM), 1-6, 2010.

10. Li, J., D.-W. Choi, S.-G. Lee, J.-H. Jang, and Y.-H. Cho, "Minimization of cogging torque in fractional-slot axial flux permanent magnet synchronous machine with conventional structure," Proc. IEEE ICEF, 1-4, Dalian, China, 2012.

11. Aydin, M. and M. Gulec, "Reduction of cogging torque in double-rotor axial-flux permanent-magnet disk motors: A review of cost-effective magnet-skewing techniques with experimental verification," IEEE Trans. Ind. Electron., Vol. 61, No. 9, 5025-5034, Sep. 2014.
doi:10.1109/TIE.2013.2276777

12. Tarımer, I., S. Sakar, and A. Dalcalı, "Effects of structural design of pole arc offset in a salient pole generator to obtaining sinusoidal voltages with the least harmonics," Przeglad Elektrotechniczny, R. 86, 367-372, NR 11a/2010, 2010.

13. Arslan, S., S. A. Oy, and I. Tarımer, "Investigation of stator and rotor slits’ effects to the torque and efficiency of an induction motor," TEM Journal, Vol. 1, 117-125, Feb. 2017.

14. Tarımer, I., "Investigation of the effects of rotor pole geometry and permanent magnet to line start permanent magnet synchronous motor’s efficiency," Elektronika Ir Elektrotechnika, Vol. 90, No. 2, 67-72, 2009.

15. Tarımer, I. and A. Dalcalı, "Effects of permanent magnets on torque and power density of spherical motors," TTEM (Technics Technologies Education Management), Vol. 10, No. 2, 144-149, 2015.

16. Tarımer, I. and C. Ocak, "Performance comparison of internal and external rotor structured wind generators mounted from same permanent magnets on same geometry," Elektronika Ir Elektrotechnika, Vol. 92, No. 4, 65-70, 2009.

17. Tarımer, I., S. Sakar, and A. Dalcalı, "Computer aided design of permanent magnet linear synchronous generator," Przeglad Elektrotechniczny, R. 86, 230-234, NR 3/2010, 2010.

18. Tiegna, H., Y. Amara, and G. Barakat, "Study of cogging torque in axial flux permanent magnet machines using an analytical model," IEEE Trans. Magn., Vol. 50, No. 2, Art. ID. 7020904, Feb. 2014.