1. Agiwal, M., A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Communications Surveys & Tutorials, Vol. 18, No. 3, 1617-1655, Third Quarter 2016.
doi:10.1109/COMST.2016.2532458
2. Wang, T., G. Li, B. Huang, Q. Miao, J. Fang, P. Li, H. Tan, W. Li, J. Ding, J. Li, and Y. Wang, "Spectrum analysis and regulations for 5G," 5G Mobile Communications, W. Xiang et al. (eds.), 27-50, Springer International Publishing Switzerland, 2017.
3. Choi, J., V. Va, N. Gonz´alez-Prelcic, R. Daniels, C. R. Bhat, R. W. Heath, and Jr., "Millimeter wave vehicular communication to support massive automotive sensing," IEEE Communications Magazine, Vol. 54, No. 12, 160-167, December 2016.
doi:10.1109/MCOM.2016.1600071CM
4. Dong, P., T. Zheng, S. Yu, H. Zhang, and X. Yan, "Enhancing vehicular communication using 5G-enabled smart collaborative networking," IEEE Wireless Communications, Vol. 24, No. 6, 72-79, December 2017.
doi:10.1109/MWC.2017.1600375
5. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Investigation on the performance of low-profile insensitive antenna with improved radiation characteristics for the future 5G applications," Microwave and Optical Technology Lett., Vol. 58, No. 9, 2148-2151, September 2016.
doi:10.1002/mop.29994
6. Nor, N. M., M. H. Jamaluddin, M. R. Kamarudin, and M. Khalily, "Rectangular dielectric resonator antenna array for 28 GHz applications," Progress In Electromagnetics Research C, Vol. 63, 53-61, 2016.
doi:10.2528/PIERC16022902
7. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6904-6914, December 2017.
doi:10.1109/TAP.2017.2759899
8. Alhalabi, R. and G. Rebeiz, "High-efficiency angled-dipole antennas for millimeter-wave phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3136-3142, October 2008.
doi:10.1109/TAP.2008.929506
9. Ta, S. X. and I. Park, "Broadband printed-dipole antennas for millimeter wave applications," Proc. Int. Symp. IEEE Radio Wireless, 65-67, Phoenix, AZ, USA, January 2017.
10. Ta, S. X., H. Choo, and I. Park, "Broadband printed-dipole antenna and its arrays for 5G applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2183-2186, May 2017.
doi:10.1109/LAWP.2017.2703850
11. Jilani, S. F. and A. Alomainy, "A multiband millimeter-wave two-dimensional array based on enhanced Franklin antenna for 5G wireless systems," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2983-2986, September 2017.
doi:10.1109/LAWP.2017.2756560
12. Yang, B., "A compact integrated bluetooth UWB dual-band notch antenna for automotive communication," International Journal of Electronics and Communications, Vol. 80, 104-113, 2017.
doi:10.1016/j.aeue.2017.06.031
13. Madhav, B. T. P., T. Anilkumar, and K. Sarat, "Transparent and conformal wheel-shaped fractal antenna for vehicular communication applications," International Journal of Electronics and Communications, Vol. 91, 1-10, 2018.
doi:10.1016/j.aeue.2018.04.028
14. Ramya, R. and T. Rama Rao, "Design and performance analysis of a penta-band spiral antenna for vehicular communications," Wireless Pers. Commun., Springer, March 2017.
15. Mondal, T., S. Samanta, R. Ghatak, and S. R. Bhadra Chaudhuri, "A novel tri-band hexagonal microstrip patch antenna using modified Sierpinski fractal for vehicular communication," Progress In Electromagnetics Research C, Vol. 57, 25-34, 2015.
doi:10.2528/PIERC15021105
16. Wong, H., K. K. So, and X. Gao, "Bandwidth enhancement of a monopolar patch antenna with V-shaped slot for car-to-car and WLAN communications," IEEE Transactions on Vehicular Technology, Vol. 65, No. 3, 1130-1136, March 2016.
doi:10.1109/TVT.2015.2409886
17. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., New Jersey, Wiley, 2005.
18. Kraus, J. D., R. J. Marhefka, and A. S. Khan, Antennas and Wave Propagation, 4th Ed., Mc-Graw Hill, 2015.