Vol. 84
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-06-14
CPW-Fed Body Worn Monopole Antenna on Magneto-Dielectric Substrate in C-Band
By
Progress In Electromagnetics Research C, Vol. 84, 201-213, 2018
Abstract
Body worn antennas generally face the problem of isolation when operated in close proximity to human body. Use of magneto-dielectric material as substrate for antenna makes the system compact and reduces the influence of body on performance of antenna. In addition, miniaturization of antenna size also takes place. 7 wt.% of nano-sized Ni0.5Zn0.5 Fe2O4 is dispersed as magnetic filler in flexible linear low density polyethylene matrix. Beyond 7 wt.%, the sample stiffens and loses flexibility because of percolation limit of the polymer. Verification of the composite as a potential substrate for a body worn antenna is carried out by fabricating a coplanar waveguide fed simple rectangular monopole antenna, using transmission line model at 6 GHz. Antenna performance is studied by wearing the patch on human wrist. S11 of -21.78 dB at 5.32 GHz and -10 dB bandwidth of 49.62% is observed. For comparison, an antenna at the same resonant frequency is developed on linear low density polyethylene with magnetic inclusions. The antenna on magneto-dielectric substrate shows better performance than dielectric substrate. The magnetic and dielectric properties of the Nickel Zinc Ferrite-linear low density polyethylene composite magneto-dielectric substrate reduces the influence of the human body which makes the antenna system compact and robust as additional techniques are not required for shielding of human body influence on antenna performance.
Citation
Pragyan Jyoti Gogoi, Satyajib Bhattacharyya, and Nidhi S. Bhattacharya, "CPW-Fed Body Worn Monopole Antenna on Magneto-Dielectric Substrate in C-Band," Progress In Electromagnetics Research C, Vol. 84, 201-213, 2018.
doi:10.2528/PIERC18040604
References

1. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications, 151-188, Artech House, London, 2012.

2. Cibin, C., P. Leuchtmann, M. Gimersky, R. Vahldieck, and S. Moscibroda, "A flexible wearable antenna," Antennas and Propagation Society International Symposium, Vol. 4, 3589-3592, IEEE, June 2004.

3. Kang, C. H., S. J. Wu, and J. H. Tarng, "A novel folded UWB antenna for wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1139-1142, 2012.
doi:10.1109/TAP.2011.2173101

4. Conway, G. A. and W. G. Scanlon, "Antennas for over-body-surface communication at 2.45 GHz," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 844-855, 2009.
doi:10.1109/TAP.2009.2014525

5. Klemm, M., I. Z. Kovcs, G. F. Pedersen, and G. Troster, "Novel small-size directional antenna for UWB WBAN/WPAN applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 12, 3884-3896, 2005.
doi:10.1109/TAP.2005.859906

6. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

7. Yablonovitch, E. and D. Sievenpiper, Circuit and Method for Eliminating Surface Currents on Metals, U.S. Patent No. 6,262,495 B1, July 17, 2001.

8. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 926-935, 2009.
doi:10.1109/TAP.2009.2014527

9. Klemm, M., I. Z. Kovcs, G. F. Pedersen, and G. Troster, "Novel small-size directional antenna for UWB WBAN/WPAN applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 12, 3884-3896, 2005.
doi:10.1109/TAP.2005.859906

10. Yarovoy, A. G., R. Pugliese, J. H. Zijderveld, and L. P. Ligthart, "Antenna development for UWB impulse radio," IEEE 34th European Microwave Conference, 1257-1260, Amsterdam, The Netherlands, 2004.

11. Alves, T., R. Augustine, P. Queffelec, M. Grzeskowiak, B. Poussot, and J. M. Laheurte, "Polymeric ferrite-loaded antennas for on-body communications," Microwave Opt. Technol. Lett., Vol. 51, No. 11, 2530-2533, 2009.
doi:10.1002/mop.24669

12. Mosallaei, H. and K. Sarabandi, "Magneto-dielectrics in electromagnetics: Concept and applications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1558-1567, 2004.
doi:10.1109/TAP.2004.829413

13. Borah, K. and N. S. Bhattacharyya, "Magnetodielectric composite with NiFe2O4 inclusions as substrates for microstrip antennas," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, No. 5, 1825-1832, 2012.
doi:10.1109/TDEI.2012.6311533

14. Kong, L. B., Z. W. Li, G. Q. Lin, and Y. B. Gan, "Ni-Zn ferrites composites with almost equal values of permeability and permittivity for low-frequency antenna design," IEEE Transactions on Magnetics, Vol. 43, No. 1, 6-10, 2007.
doi:10.1109/TMAG.2006.886321

15. Su, H., X. Tang, H. Zhang, Y. Jing, and F. Bai, "Low-loss magneto-dielectric materials: Approaches and developments," Journal of Electronic Materials, Vol. 43, No. 2, 299, 2014.
doi:10.1007/s11664-013-2831-5

16. Souriou, D., J. L.Mattei, A. Chevalier, and P. Queffelec, "Influential parameters on electromagnetic properties of nickel-zinc ferrites for antenna miniaturization," Journal of Applied Physics, Vol. 107, No. 9, 09A518, 2010.
doi:10.1063/1.3356235

17. Mattei, J. L., E. Le Guen, and A. Chevalier, "Dense and half-dense NiZnCo ferrite ceramics: Their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies," J. Appl. Phys., Vol. 117, 084904, 2015.
doi:10.1063/1.4913700

18. Fechine, P. B. A., A. F. L. Almeida, R. S. Oliveir, R. S. T. Moretzsohn, and A. S. B. Sombra, "Bulk and patch ferrite resonator antennas based on the ceramic matrix composite: GdIGx YIG1−x," Microwave Opti. Techno. Lett., Vol. 51, No. 6, 1595-1602, 2009.
doi:10.1002/mop.24395

19. Pardavi-Horvath, M., "Microwave applications of soft ferrites," J. Magne. Magne. Mater., Vol. 215, 171-183, 2000.
doi:10.1016/S0304-8853(00)00106-2

20. Kotnala, R. K., S. Ahmad, A. S. Ahmed, J. Shah, and A. Azam, "Investigation of structural, dielectric, and magnetic properties of hard and soft mixed ferrite composites," J. Appl. Phys., Vol. 112, 054323, 2012.
doi:10.1063/1.4752030

21. Ikonen, P. M., K. N. Rozanov, A. V. Osipov, P. Alitalo, and S. A. Tretyakov, "Magnetodielectric substrates in antenna miniaturization: Potential and limitations," IEEE Transactions on Antennas and Propagation, Vol. 54, 3391-3399, 2006.
doi:10.1109/TAP.2006.884303

22. Ikonen, P. and S. Tretyakov, "On the advantages of magnetic materials in microstrip antenna miniaturization," Microwave Opti. Techno. Lett., Vol. 50, 3131-3134, 2008.
doi:10.1002/mop.23931

23. Martin, L. J., S. Ooi, D. Staiculescu, M. D. Hill, C. P. Wong, and M. M. Tentzeris, "Effect of permittivity and permeability of a flexible magnetic composite material on the performance and miniaturization capability of planar antennas for RFID and wearable wireless applications," IEEE Trans. Compo. Packag. Techno., Vol. 32, 849-858, 2009.
doi:10.1109/TCAPT.2009.2032767

24. Namin, F., T. G. Spence, D. H. Werner, and E. Semouchkina, "Broadband, miniaturized stacked-patch antennas for L-band operation based on magneto-dielectric substrates," IEEE Transactions on Antennas and Propagation, Vol. 58, 2817-2822, 2010.
doi:10.1109/TAP.2010.2052574

25. Altunyurt, N., M. Swaminathan, P. M. Raj, and V. Nair, "Antenna miniaturization using magneto-dielectric substrates," 59th Electronic Components and Technology Conference, IEEE ECTC, 801-808, San Diego, CA, May 2009.

26. Xia, Q., H. Su, T. Zhang, J. Li, G. Shen, H. Zhang, and X. Tang, "Miniaturized terrestrial digital media broadcasting antenna based on low loss magneto-dielectric materials for mobile handset applications," J. Appl. Phys., Vol. 112, 043915, 2012.
doi:10.1063/1.4748175

27. Peng, Y., B. F. Rahman, X. Wang, and G. Wang, "Engineered smart substrate with embedded patterned permalloy thin film for radio frequency applications," J. Appl. Phys., Vol. 115, 17A505, 2014.
doi:10.1063/1.4861203

28. Parsons, P., K. Duncan, A. K. Giri, J. Q. Xiao, and S. P. Karna, "Electromagnetic properties of NiZn ferrite nanoparticles and their polymer composites," J. Appl. Phys., Vol. 115, 173905, 2014.
doi:10.1063/1.4873235

29. Mathew, D. S. and R. S. Juang, "An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in micro emulsions," Chemical Engine. J., Vol. 129, 51-65, 2007.
doi:10.1016/j.cej.2006.11.001

30. Uskokovic, V., M. Drofenik, and I. Ban, "The characterization of nanosized nickel-zinc ferrites synthesized within reverse micelles of CTAB/1–hexanol/water microemulsion," J. Magne. Magne. Mater., Vol. 284, 294-302, 2004.
doi:10.1016/j.jmmm.2004.06.051

31. Li, Y. J., M. Xu, J. Q. Feng, and Z. M. Dang, "Dielectric behavior of a metal-polymer composite with low percolation threshold," Appl. Phys. Lett., Vol. 89, 072902, 2006.
doi:10.1063/1.2337157

32. Aksun, M. I., S. L. Chuang, and Y. T. Lo, "Coplanar waveguide-fed microstrip antennas," Microwave Opt. Technol. Lett., Vol. 4, No. 8, 292-295, 1991.
doi:10.1002/mop.4650040804

33. Deng, S. M., M. D. Wu, and P. Hsu, "Analysis of coplanar waveguide-fed microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 7, 734-737, 1995.
doi:10.1109/8.391149

34. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, John Wiley & Sons, 2004.

35. Joseph, S., B. Paul, S. Mridula, and P. Mohanan, "CPW-fed UWB compact antenna for multiband applications," Progress In Electromagnetics Research C, Vol. 56, 29-38, 2015.
doi:10.2528/PIERC14112401

36. Psychoudakis, D. and J. L. Volakis, "Conformal asymmetric meandered flare (AMF) antenna for body-worn applications," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 931-934, 2009.
doi:10.1109/LAWP.2009.2028662

37. Alomainy, A., A. Sani, A. Rahman, J. G. Santas, and Y. Hao, "Transient characteristics of wearable antennas and radio propagation channels for ultrawideband body-centric wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 57, 875-884, 2009.
doi:10.1109/TAP.2009.2014588

38. Deng, S. M., M. D. Wu, and P. Hsu, "Analysis of coplanar waveguide-fed microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 43, 734-737, 1995.
doi:10.1109/8.391149

39. Kormanyos, B. K., W. Harokopus, Jr., L. P. Katehi, and G. M. Rebeiz, "CPW-fed active slot antennas," IEEE Trans. Microwave Theory Techniq., Vol. 42, 541-545, 1994.
doi:10.1109/22.285057

40. Parkash, D. and R. Khanna, "Design and development of CPW-fed microstrip antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research C, Vol. 17, 17-27, 2010.
doi:10.2528/PIERC10090603

41. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, John Wiley & Sons, 2001.
doi:10.1002/0471224758

42. Mark, J. E., Polymer Data Handbook, Oxford University Press, 1999.

43. Harper, C. A., Modern Plastics Handbook, McGraw-Hill Professional, USA, 2000.

44. Gogoi, P. J., M. M. Rabha, S. Bhattacharyya, and N. S. Bhattacharyya, "Miniaturization of body worn antenna using nano magneto-dielectric composite as substrate in C-band," Journal of Magnetism and Magnetic Materials, Vol. 414, 209-218, 2016.
doi:10.1016/j.jmmm.2016.04.016

45. Shahane, G. S., A. Kumar, M. Arora, R. P. Pant, and K. Lal, "Synthesis and characterization of Ni-Zn ferrite nanoparticles," J. Magne. Magne. Mater., Vol. 322, 1015-1019, 2010.
doi:10.1016/j.jmmm.2009.12.006

46. Mattei, J. L., E. Le Guen, A. Chevalier, and A. C. Tarot, "Experimental determination of magnetocrystalline anisotropy constants and saturation magnetostriction constants of NiZn and NiZnCo ferrites intended to be used for antennas miniaturization," J. Magne. Magne. Mater., Vol. 374, 762-768, 2015.
doi:10.1016/j.jmmm.2014.09.026

47. Son, S., M. Taheri, E. Carpenter, V. G. Harris, and M. E. McHenry, "Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch," J. Appl. Phys., Vol. 91, 7589-7591, 2002.
doi:10.1063/1.1452705

48. Maaz, K., S. Karim, A. Mumtaz, S. K. Hasanain, J. Liu, and J. L. Duan, "Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route," J. Magne. Magne. Mater., Vol. 321, 1838-1842, 2009.
doi:10.1016/j.jmmm.2008.11.098

49. Jiang, N. N., Y. Yang, Y. X. Zhang, J. P. Zhou, P. Liu, and C. Y. Deng, "Influence of zinc concentration on structure, complex permittivity and permeability of Ni-Zn ferrites at high frequency," J. Magne. Magne. Mater., Vol. 401, 370-377, 2016.
doi:10.1016/j.jmmm.2015.10.003

50. Gogoi, P. J., S. Bhattacharyya, and N. S. Bhattacharyya, "Linear low density polyethylene (LLDPE) as flexible substrate for wrist and arm antennas in C-band," J. Electronic Mater., Vol. 44, 1071-1080, 2015.
doi:10.1007/s11664-015-3629-4

51. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., 811-881, John Wiley & Sons, 2005.

52. Garg, R., P. Bhartia, I. Bahl, and A. Ittipibon, Microstrip Antenna Design Handbook, 253-314, Artech House, London, 2001.

53. Pucel, R. A. and D. J. Masse, "Microstrip propagation on magnetic substrates Part I: Design theory," IEEE Trans. Microwave Theory Techniq., Vol. 20, 304-308, 1972.
doi:10.1109/TMTT.1972.1127749

54. Hansen, R. C. and M. Burke, "Antennas with magneto-dielectrics," Microwave Opti. Technol. Lett., Vol. 26, 75-78, 2000.
doi:10.1002/1098-2760(20000720)26:2<75::AID-MOP3>3.0.CO;2-W