Vol. 84
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-05-24
Directive and Reconfigurable Loaded Antenna Array for Wireless Sensor Networks
By
Progress In Electromagnetics Research C, Vol. 84, 103-117, 2018
Abstract
In this paper, a four switchable beam antenna dedicated to Wireless Sensor Network (WSN) nodes in the 2.4 ISM band (2.4-2.485 GHz) is presented. It consists of two fed monopoles and two loaded parasitic ones. The nature and value of the load are obtained using the Uzkov equations, allowing to determine current weighting coefficients in the case of two separately fed antennas, in order to maximize the gain and the directivity in a given direction. Reconfigurability is achieved using reflector and director elements activated by PIN diodes to reduce the back radiation and pointing in the desired direction. Thus, a first system is obtained which consists of two elements, one fed and the other loaded with an inductor, with a maximum gain of 5.2 dBi in simulation and 4.7 dBi measured at 2.4 GHz in azimuthal directions of 90˚ and 270˚. Then, the system is compared with another, composed of two antennas fed separately. Finally, the same methodology is applied to an array of four antennas, in which two antennas are fed, and two are loaded. This last structure is capable of steering its radiation pattern in the azimuth plane, covering a 360˚ angle with four beams (0˚, 90˚, 180˚ and 270˚). The total gain achieved is 4 dBi for each beam in the azimuth plane.
Citation
Akimu Dihissou, Aliou Diallo, Philippe Le Thuc, and Robert Staraj, "Directive and Reconfigurable Loaded Antenna Array for Wireless Sensor Networks," Progress In Electromagnetics Research C, Vol. 84, 103-117, 2018.
doi:10.2528/PIERC18032403
References

1. Puccinelli, D. and M. Haenggi, "Wireless sensor networks: Applications and challenges of ubiquitous sensing," IEEE Circuits and Systems Magazine, Vol. 5, No. 3, 19-31, 2005.
doi:10.1109/MCAS.2005.1507522

2. Ceclio, J. and P. Furtado, Wireless Sensors in Heterogeneous Networked Systems, Springer, 2014.

3. Catarinucci, L., S. Guglielmi, R. Colella, and L. Tarricone, "Compact switched-beam antennas enabling novel power-efficient wireless sensor networks," IEEE Sensors Journal, Vol. 14, No. 9, 3252-3259, September 2013.
doi:10.1109/JSEN.2014.2326971

4. Anastasi, G., M. Conti, D. M. Francesco, and A. Passarella, "Energy conservation in wireless sensor networks: A survey," Ad Hoc Networks, Vol. 7, No. 3, 537-568, 2009.
doi:10.1016/j.adhoc.2008.06.003

5. Barousis, V. I., E. Roumpakias, and C. B. Papadias, "A parasitic antenna array for directive multi-hop sensor communication," IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 500-504, June 2013.
doi:10.1109/SPAWC.2013.6612100

6. Le, T. N., A. Pegatoquet, T. Le Huy, L. Lizzi, and F. Ferrero, "Improving energy efficiency of mobile WSN using reconfigurable directional antennas," IEEE Communications Letters, Vol. 20, No. 6, 1243-1246, June 2016.
doi:10.1109/LCOMM.2016.2554544

7. Joshi, G. P., S. Y. Nam, and S. W. Kim, "Cognitive radio wireless sensor networks: Applications, challenges and research trends," Sensors, Vol. 13, No. 9, 11196-11228, 2013.
doi:10.3390/s130911196

8. Kruesi, C. M., R. J. Vyas, and M. M. Tentzeris, "Design and development of a novel 3-D cubic antenna for wireless sensor networks (WSNs) and RFID applications," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3293-3299, October 2009.
doi:10.1109/TAP.2009.2028672

9. Genovesi, S., S. Saponara, and A. Monorchio, "Parametric design of compact dual-frequency antennas for wireless sensor networks," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2619-2627, July 2011.
doi:10.1109/TAP.2011.2152313

10. Hwang, K. S., J. Ahn, K. J. Kim, H. K. Yoon, and Y. J. Yoon, "Pattern reconfigurable antenna for a wireless sensor network sink node," Asia-Pacific Microwave Conference, Vol. 59, No. 7, 2021-2024, December 2010.

11. Mottola, L., T. Voigt, and G. P. Picco, "Electronically-switched directional antennas for wireless sensor networks: A full-stack evaluation," IEEE International Conference on Sensing, Communications and Networking (SECON), 176-184, June 2013.
doi:10.1109/SAHCN.2013.6644976

12. Yang, C.-L., J. F. Mastarone, and W. J. Chappell, "Directional antennas for angular diversity in wireless sensor networks," EEE Antennas and Propagation Society International Symposium, Vol. 4A, 263-266, July 2005.

13. Giorgetti, G., A. Cidronali, S. K. S. Gupta, and G. Manes, "Exploiting low-cost directional antennas in 2.4 GHz IEEE 802.15.4 wireless sensor networks," European Conference on Wireless Technologies, 217-220, October 2007.

14. Kim, K., K. Hwang, J. Ahn, and Y. Yoon, "Pattern reconfigurable antenna for wireless sensor network system," Electronics Letters, Vol. 48, No. 16, 984-985, August 2012.
doi:10.1049/el.2012.1532

15. Lizzi, L., F. Ferrero, J. M. Ribero, R. Staraj, T. N. Le, A. Pegatoquet, and L. H. Trinh, "Differential pattern-reconfigurable antenna prototype for efficient wireless sensor networks," IEEE International Symposium on Antennas and Propagation, 1239-1240, June 2016.

16. Huang, R. and Y. Manoli, "Phased array and adaptive antenna transceivers in wireless sensor networks," Euromicro Symposium on Digital System Design, 587-592, August 2004.
doi:10.1109/DSD.2004.1333329

17. "PowWow Hardware Platform,", http://powwow.gforge.inria.fr/subpages/Hardware.html.

18. O'Donnell, T. H. and A. D. Yaghjian, "Electrically small superdirective arrays using parasitic elements," IEEE Antennas and Propagation Society International Symposium, 3111-3114, July 2006.

19. Haskou, A., A. Sharaiha, and S. Collardey, "Design of small parasitic loaded superdirective end-fire antenna arrays," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5456-5464, December 2015.
doi:10.1109/TAP.2015.2496112

20. Clemente, A., C. Jouanlanne, and C. Delaveaud, "Analysis and design of a four-element superdirective compact dipole antenna array," 11th European Conference on Antennas and Propagation (EUCAP), 2700-2704, March 2017.

21. Sentucq, B., A. Sharaiha, and S. Collardey, "Superdirective compact parasitic array of metamaterial-inspired electrically small antenna," International Workshop on Antennas Technology (iWAT), 269-272, March 2013.

22. Dihissou, A., A. Diallo, P. Le Thuc, and R. Staraj, "Antenne directive et reconfigurable pour reseau de capteurs sans fil," 19emes Journees Nationales Microondes (JNM 2015), June 2015.

23. Dihissou, A., A. Diallo, P. Le Thuc, and R. Staraj, "Technique to increase directivity of a reconfigurable array antenna for wireless sensor network," 11th European Conference on Antennas and Propagation (EUCAP), 606-610, March 2017.

24. Nasrabadi, E. and P. Rezaei, "A novel design of reconfigurable monopole antenna with switchable triple band-rejection for UWB applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 8, 1223-1229, 2016.
doi:10.1017/S1759078715000744

25. Boyle, K., "Radiation patterns and correlation of closely spaced linear antennas," IEEE Trans. Antennas Propag., Vol. 50, No. 8, 1162-1165, August 2002.
doi:10.1109/TAP.2002.801367

26. Mazinani, S. M. and H. R. Hassani, "Two element wideband Planar plate monopole superdirective array," 18th Iranian Conference on Electrical Engineering, 80-85, May 2010.
doi:10.1109/IRANIANCEE.2010.5507521

27. Haskou, A., A. Sharaiha, S. Collardey, M. Pigeon, and K. Mahdjoubi, "A design methodology for electrically small superdirective antenna arrays," Loughborough Antennas and Propagation Conference (LAPC), 405-409, November 2014.

28. Haskou, A., A. Sharaiha, and S. Collardey, "Integrating superdirective electrically small antenna arrays in PCBs," IEEE Antennas Wireless Propag. Lett., Vol. 15, 24-27, 2016.

29. Altshuler, E. E., T. H. O'Donnell, A. D. Yaghjian, and S. R. Best, "A monopole superdirective array," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2653-2661, August 2005.
doi:10.1109/TAP.2005.851810

30. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley-Interscience, 2005.

31. Harrington, R., "Reactively controlled directive arrays," IEEE Trans. Antennas Propag., Vol. 26, No. 3, 390-395, May 1978.
doi:10.1109/TAP.1978.1141852

32. Diallo, A., C. Luxey, P. Le Thuc, R. Staraj, and G. Kossiavas, "Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3063-3074, November 2006.
doi:10.1109/TAP.2006.883981

33. Diallo, A., C. Luxey, P. Le Thuc, R. Staraj, and G. Kossiavas, "Reduction of the mutual coupling between two planar inverted-F antennas working in close radiocommunication standards," 18th International Conference on Applied Electromagnetics and Communications, 1-4, October 2005.