1. Cheng, H., X. D. Liu, and J. Zhao, "Design and optimization of a high-band width low-speed high-torque permanent magnetic synchronous motor," Transactions of China Electrotechnical Society, Vol. 29, No. S1, 108-114, 2014.
2. Massimo, B., M. Giovanni, and B. Nicola, "Structural analysis of the interior PM rotor considering both static and fatigue loading," IEEE Transactions on Industry Applications, Vol. 50, No. 1, 253-260, 2014.
doi:10.1109/TIA.2013.2268048
3. Liu, X. P., Y. Li, Z. Q. Liu, et al. "Optimized design of a high power density permanent magnet-assisted synchronous reluctance machine with low-cost ferrite magnets for EVs/HEVs," COMPEL --- The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 35, No. 6, 1949-1964, 2016.
doi:10.1108/COMPEL-05-2016-0233
4. Wang, J., K. Zhao, and F. Chai, "Research review of flux-weakening of permanent magnet synchronous motor," Micromotor, Vol. 47, No. 01, 1–6+21, 2014.
5. Zhao, J. L., M. Y. Lin, X. H. Fu, et al. "Review and new progress of hybrid excitation synchronous motor and its control technology," Transactions of China Electrotechnical Society, Vol. 34, No. 33, 5876-5887, 2014.
6. Liu, X. P., A. H. Zheng, and C. Wang, "Design of a stator-separated axial flux-switching hybrid excitation synchronous machine," International Conference on Electrical Machines and Systems (ICEMS), Vol. 1, No. 4, 1-4, 2011.
7. Liu, X. P., D. Cheng, M. Wang, et al. "Mechanical dynamic analysis and field-weakening capacity study of a variable magnetic flux axial magnetic permanent magnet motor," Transactions of China Electrotechnical Society, Vol. 23, 54-62, 2016.
8. Zhao, J., B. Li, and Z. X. Gu, "Research on an axial flux PMSM with radially sliding permanent magnets," Energies, Vol. 8, No. 3, 1663-1684, 2015.
doi:10.3390/en8031663
9. Zhao, J., Y. S. Yan, Z. X. Gu, Z. Chen, and P. Zheng, "Research on an axial-axial flux compound-structure PMSM with varying air gap to fulfill field-weakening control," Proceedings of the Electrical Machines and Systems, Vol. 22-25, 3345-3349, 2014.
10. Tessarolo, A., M. Mezzarobba, and R. Menis, "A new rotor design for flux weakening capability improvement in spoke-type interior permanent magnet synchronous machines," Proc. 9th Int. Conf. Ecol. Veh. Renew. Energies (EVER), 1-9, 2014.
11. Zhu, Z. Q., M. M. J. Al-Ani, X. Liu, M. Hasegawa, A. Pride, and R. Deodhar, "Comparison of flux weakening capability in alternative switched flux permanent magnet machines by mechanical adjusters," Proc. 20th Int. Conf. Elect. Mach. (ICEM), 2889-2895, 2012.
12. Kim, K.-C., "A novel magnetic flux weakening method of permanent magnet synchronous motor for electric vehicles," IEEE Trans. Magn., Vol. 48, No. 11, 4042-4045, 2012.
doi:10.1109/TMAG.2012.2198444
13. David, G. D., M. K. Andrew, E. Lyndon, and P. Mircea, "Analysis and design techniques applied to hybrid vehicle drive machines-assessment of alternative IPM and induction motor topologies," IEEE Transactions on Industrial Electronics, Vol. 59, No. 10, 3690-3699, 2012.
doi:10.1109/TIE.2011.2165460
14. Cheng, L. X., Z. Y. Zhang, and R. Y. Tang, "A new structure for improving the field-weakening of the permanent magnet traction motor," Transactions of China Electrotechnical Society, Vol. 27, No. 03, 100-104, 2012.
15. Ling, H. Y., H. Yang, Y. K. Huang, and S. H. Fang, "Research review and new progress of memory motor," Transactions of China Electrotechnical Society, Vol. 33, No. 33, 57-67, 2013.
16. Liu, X. P., A. H. Zheng, and C.Wang, "Three dimensional finite element analysis and experimental study of a stator segmented axial flux switching hybrid excitation synchronous motor," Transactions of China Electrotechnical Society, Vol. 27, No. 10, 106-113, 2012.
17. Zhao, C. H., S. L. Ji, and X. W. Wang, "No-load characteristics of a rotor magnetic shunt radial structure hybrid excitation synchronous generator," Transactions of China Electrotechnical Society, Vol. 27, No. 09, 198-203, 2012.
18. Tessarolo, A., M. Mezzarobba, and R. Menis, "A novel interior permanent magnet motor design with a self-activated flux-weakening device for automotive applications," International Conference on Electrical Machines(ICEM), 2603-2609, 2012.
19. Owen, R., Z. Q. Zhu, J. B. Wang, et al. "Mechanically adjusted variable-flux concept for switched-flux permanent-magnet machines," 2011 International Electrical Machines and Systems (ICEMS), 1-6, 2011.
20. Zhu, Z. Q., M. Al-Ani, X. Liu, et al. "Comparison of flux weakening capability in alternative switched flux permanent magnet machines by mechanical adjusters," 2012 XXth International Electrical Machines (ICEM), 2889-2895, 2012.
doi:10.1109/ICElMach.2012.6350297
21. Tessarolo, A., M. Mezzarobba, and R. Menis, "A novel interior permanent magnet motor design with a self-activated flux-weakening device for automotive applications," 2012 XXth International Electrical Machines(ICEM), 2603-2609, 2012.
doi:10.1109/ICElMach.2012.6350252
22. Chai, F., J. Ou, and Y. L. Pei, "Field-weakening research of double stator conical permanent magnet synchronous motor," Transactions of China Electrotechnical Society, Vol. 28, No. 7, 12-18, 2013.