Vol. 86
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-09-08
A Broadband Negative Epsilon Fractal Metamaterial Unit Cell for Coaxial Notch Filter Applications
By
Progress In Electromagnetics Research C, Vol. 86, 257-267, 2018
Abstract
Herein is presented a two-dimensional negative permittivity unit cell for coaxial notch filter applications. This novel unit cell is developed through simulation in the context of an ideal infinite parallel plate waveguide, and preliminary implementation is demonstrated through simulation and measurement in a finite parallel plate waveguide. Finally, the unit cells are incorporated as an in-line notch filter in a coaxial transmission line, and their efficacy is demonstrated through simulation and measurement. The unit cell developed for this application was formed as a broadband fractal expansion of the traditional capacitively loaded strip. A partial repetition of the basic CLS I-shape was inserted in the capacitive gap on either side of the structure. This new unit cell was developed and simulated in HFSS using an incident TEM wave excitation in a parallel plate waveguide, and was shown to have two resonant frequencies of interest. The first resonance produces a wide bandwidth of negative permittivity (29.5%) from 1.3 GHz to 1.75 GHz; the second produces a region of negative permeability from 2.05 GHz to 2.45 GHz, a bandwidth of 17.8%. The current on the structure at each of these frequencies is presented, along with the pertinent fields in the waveguide. The effects of various alterations to the basic shape of the unit cell are also presented.
Citation
Kathryn Smith, and Ryan S. Adams, "A Broadband Negative Epsilon Fractal Metamaterial Unit Cell for Coaxial Notch Filter Applications," Progress In Electromagnetics Research C, Vol. 86, 257-267, 2018.
doi:10.2528/PIERC18030204
References

1. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104

2. Hudlika, M., J. Machac, and I. Nefedov, "A triple wire medium as an isotropic negative permittivity metamaterial," Progress In Electromagnetics Research, Vol. 65, 233-246, 2006.
doi:10.2528/PIER06102703

3. Weldon, T. P., K. Miehle, R. S. Adams, and K. Daneshvar, "A wideband microwave double-negative metamaterial with non-Foster loading," Proc. IEEE Southeastcon, 1-5, 2012.

4. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

5. De, T. M., M. Luque, N. R. K. Devarapalli, and C. Christodoulou, "Investigation of bandwidth enhancement in volumetric left-handed metamaterials using fractals," Progress In Electromagnetics Research, Vol. 131, 185-194, 2012.

6. Smith, K. L. and R. S. Adams, "A λ/60 spherical spiral metamaterial for negative permeability and negative permittivity," IEEE Int. Symp. on Ant. and Prop. (APSURSI), 719-720, 2016.

7. Miyamaru, F., Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, "Terahertz electric response of fractal metamaterial structures," Phys. Rev. B, Vol. 77, 045124.1-045124.6, 2008.

8. Li, D. and J. Mao, "Koch-like sided Sierpinski gasket multifractal dipole antenna," Progress In Progress In, Vol. 126, 399-427, 2012.

9. Smith, Smith, R. S. Adams, and T. P. Weldon, "A novel broadband fractal metamaterial unit cell," IEEE Int. Symp. on Ant. and Prop., 549-550, 2014.

10. Khan, O., Z. Islam, I. Rashid, F. Bhatti, and Q. Islam, "Novel miniaturized Koch pentagonal fractal antenna for multiband wireless applications," Progress In Electromagnetics Research, Vol. 141, 693-710, 2013.
doi:10.2528/PIER13060904

11. Li, D. and J. Mao, "Sierpinskized Koch-like sided multifractal dipole antenna," Progress In Electromagnetics Research, Vol. 130, 207-224, 2012.
doi:10.2528/PIER12060108

12. Liu, R., A. Degiron, J. J. Mock, and D. R. Smith, "Negative index material composed of electric and magnetic resonators," Appl. Phys. Lett., Vol. 90, No. 26, 263504.1-263504.3, 2007.

13. Szabo, Z., G. Park, R. Hedge, and E. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310

14. Shehan, J.W., R. S. Adams, and T. P.Weldon, "Metamaterial measurement in a cylindrical coaxial fixture with consideration for inter-element coupling," IEEE Radio Sci. Mtg., 138-138, 2014.

15. 15, H., G. Wang, and Q. Peng, "Fractal-shaped complementary electric-LC resonator for bandstop filter ," Progress In Electromagnetics Research, Vol. 23, 205-217, 2011.

16. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "Dual-mode behavior of the complementary electric-LC resonators loaded on transmission line: Analysis and applications," J. Appl. Phys., Vol. 116, 083705-083705, 2014.
doi:10.1063/1.4893751