Vol. 84
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-06-03
Design of Differential Source Fed Circularly Polarized Rectenna with Embedded Slots for Harmonics Suppression
By
Progress In Electromagnetics Research C, Vol. 84, 175-187, 2018
Abstract
This work presents an enhanced rectenna with a differential source feeding scheme for radio frequency (RF) energy harvesting at 2.45 GHz frequency. A circularly polarized (CP) microstrip antenna with embedded slots is designed which efficiently attains harmonics suppression. By modifying size and position of two diametrically opposite triangular projections in the top patch, two orthogonal modes that have equal magnitude and are in phase quadrature are excited. The four radial slots embedded in the antenna can block 2nd and 3rd harmonics which is suitable for onboard rectenna design without harmonics filter. A microstrip tapered feed line is used to match antenna element with 50-ohm impedance. The designed antenna is then tested for RF energy harvesting in two ways. One is conventional single source fed rectenna (SSFR), and the other is proposed differential source fed rectenna (DSFR). In the DSFR, the designed antennas are differentially operated by making a difference of λg/2 path length (λg Guided wavelength), and the ports are then connected to a differentially driven optimized rectifier circuit. For comparison, an SSFR and a DSFR are fabricated and tested. The circuit parameters in each case are optimized in Agilent Design System (ADS) 2011 software to maximize RF to direct current (DC) conversion efficiency. The proposed DSFR has a maximum efficiency (RF-DC) of 41.63% at 10 dBm RF input power. In the input power range from -20 dBm to 10 dBm, the DSFR has improved performance and higher efficiency over the SSFR.
Citation
Deepak Kumar, and Kalpana Chaudhary, "Design of Differential Source Fed Circularly Polarized Rectenna with Embedded Slots for Harmonics Suppression," Progress In Electromagnetics Research C, Vol. 84, 175-187, 2018.
doi:10.2528/PIERC18021401
References

1. Takhedmit, H., et al. "Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device," Electron. Lett., Vol. 46, No. 12, 811, 2010.
doi:10.1049/el.2010.1075

2. Chaudhary, K. and B. R. Vishvakarma, "Feasibility study of LEO, GEO and Molniya Orbit based satellite solar power station for some identified sites in India," Adv. Sp. Res., Vol. 46, No. 9, 1177-1183, 2010.
doi:10.1016/j.asr.2010.06.012

3. Shinohara, N. and H. Matsumoto, "Design of Space Solar Power System (SSPS) with phase and amplitude controlled magnetron," Asia-pacific Radio Science Conference, 624-626, 2004.

4. Shinohara, N. and H. Matsumoto, "Microwave power transmission system with phase and amplitude controlled magnetrons," Proceedings of 2nd International Conference on Recent Advances in Space Technologies (RAST 2005), 28-33, 2004.

5. Jabbar, H., S. Member, Y. S. S. Member, and T. T. Jeong, "RF energy harvesting system and circuits for charging of mobile devices," IEEE Trans. Consum. Electron., Vol. 56, No. 1, 247-253, 2010.
doi:10.1109/TCE.2010.5439152

6. Sun, H., Y. X. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 929-932, 2012.

7. Lu, J.-H. and S.-C. Lin, "Broadband design of planar circularly polarized annular-ring antenna for RFID applications," Progress In Electromagnetics Research Letters, Vol. 68, 1-8, 2017.
doi:10.2528/PIERL17070302

8. Prakash, K. C., S. Mathew, R. Anitha, P. V. Vinesh, M. P. Jayakrishnan, P. Mohanan, and K. Vasudevan, "Circularly polarized dodecagonal patch antenna with polygonal slot for RFID applications," Progress In Electromagnetics Research C, Vol. 61, 9-15, 2016.
doi:10.2528/PIERC15110301

9. Douyere, A., J. D. L. S. Luk, and F. Alicalapa, "High efficiency microwave rectenna circuit: Modelling and design," Electron. Lett., Vol. 44, No. 24, 1-2, 2008.
doi:10.1049/el:20081794

10. Sun, H., "An enhanced rectenna using differentially-fed rectifier for wireless power transmission," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 32-35, 2016.

11. Chin, C. H. K., Q. Xue, and C. H. Chan, "Design of a 5.8-GHz rectenna incorporating a new patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 4, No. 1, 175-178, 2005.
doi:10.1109/LAWP.2005.846434

12. Matsunaga, T., E. Nishiyama, I. Toyoda, and A. Structure, "5.8-GHz stacked differential mode rectenna suitable for large-scale rectenna arrays," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5944-5949, 2015.
doi:10.1109/TAP.2015.2491319

13. Sakamoto, T., Y. Ushijima, E. Nishiyama, M. Aikawa, and I. Toyoda, "5.8-GHz series/parallel connected rectenna array using expandable differential rectenna units," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4872-4875, Sep. 2013.
doi:10.1109/TAP.2013.2266316

14. Chou, J. H., D. B. Lin, K. L.Weng, and H. J. Li, "All polarization receiving rectenna with harmonic rejection property for wireless power transmission," IEEE Trans. Antennas Propag., Vol. 62, No. 10, 5242-5249, 2014.
doi:10.1109/TAP.2014.2340895

15. Ren, Y. J. and K. Chang, "5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1495-1502, 2006.
doi:10.1109/TMTT.2006.871362

16. Huang, F.-J., T.-C. Yo, C.-M. Lee, and C.-H. Luo, "Design of circular polarization antenna with harmonic suppression for rectenna application," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 592-595, 2012.
doi:10.1109/LAWP.2012.2201437