Vol. 82
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-01
Design and Development of a Unit Element Planar Folded Dipole End-Fired Antenna for Aircraft Collision Avoidance System
By
Progress In Electromagnetics Research C, Vol. 82, 171-183, 2018
Abstract
Aircraft collision avoidance system is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between aircraft. End-fired antenna is suitable to be used in such airborne systems where low aerodynamic drag is urgently required. An effort to develop such an antenna using dipole elements is presented in this paper. Here a unit element planar folded dipole antenna is presented which radiates in the end-fire direction. Split ring resonators inspired artificial materials are incorporated in the design to improve the directivity performance of the proposed antenna, and those materials are loaded in the same plane of the primary dipole radiator. Here suppression of surface wave in the antenna takes place, which results in gain enhancement and also reduction of side lobes which make radiation pattern better. All these proposed antennas are designed and simulated in CST Microwave Studio (MWS) EM tool which is based on time domain solver. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. Quite good agreement is achieved between the simulated and measured results. Much better performance characteristics make this proposed antenna a good candidate for this application.
Citation
Debajit De, and Prasanna Kumar Sahu, "Design and Development of a Unit Element Planar Folded Dipole End-Fired Antenna for Aircraft Collision Avoidance System," Progress In Electromagnetics Research C, Vol. 82, 171-183, 2018.
doi:10.2528/PIERC18011207
References

1. Ammann, M. J. and Z. N. Chen, "Wideband monopole antennas for multi-band wireless systems," IEEE Antennas and Propagation Magazine, Vol. 45, No. 2, 146-150, 2003.
doi:10.1109/MAP.2003.1203133

2. Booker, H. G., "Slot aerials and their relation to complementary wire aerials (Babinets principle)," Journal of the Institution of Electrical Engineers. Part IIIA: Radiolocation, Vol. 93, No. 4, 620-626, 1946.
doi:10.1049/ji-3a-1.1946.0150

3. Wong, K. L. and W. H. Hsu, "A broad-band rectangular patch antenna with a pair of wide slits," IIEEE Transactions on Antennas and Propagation, Vol. 49, No. 9, 1345-1347, 2001.
doi:10.1109/8.951507

4. DeJean, G. R., T. T. Thai, S. Nikolaou, and M. M. Tentzeris, "Design and analysis of microstrip bi-Yagi and quad-Yagi antenna arrays for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 244-248, 2007.
doi:10.1109/LAWP.2007.893104

5. Ehrenspeck, H., "The double-helix antenna and its variants, a new class of tunable endfire antennas ," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 2, 203-208, 1965.
doi:10.1109/TAP.1965.1138408

6. Pazin, L. and Y. Leviatan, "A compact 60-GHz tapered slot antenna printed on LCP substrate for WPAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 272-275, 2010.
doi:10.1109/LAWP.2010.2046612

7. Zheng, G., A. A. Kishk, A. B. Yakovlev, and A.W. Glisson, "Simplified feed for amodified printed Yagi antenna," IEEE Electronics Letters, Vol. 40, No. 8, 464-465, 2004.
doi:10.1049/el:20040348

8. Zheng, G., A. A. Kishk, A. B. Yakovlev, and A. W. Glisson, "A broad band printed bow-tie antenna with a simplified feed," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 4024-4027, 2004.

9. Deal, W. R., N. Kaneda, J. Sor, Y. Qian, and T. Itoh, "A new quasi-Yagi antenna for planar active antenna arrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 6, 910-918, 2000.
doi:10.1109/22.846717

10. Leong, K. M. K. H., Y. Qian, and T. Itoh, "Surface wave enhanced broadband planar antenna for wireless applications," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 6, 62-64, 2001.
doi:10.1109/7260.914303

11. Zhou, B. and T. J. Cui, "Directivity enhancement to vivaldi antennas using compactly anisotropic zero-index metamaterials ," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 326-329, 2011.
doi:10.1109/LAWP.2011.2142170

12. Sun, M., Z. N. Chen, and X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1741-1746, 2013.
doi:10.1109/TAP.2012.2237154

13. Chen, L., Z. Lei, R. Yang, J. Fan, and X. Shi, "A broadband artificial material for gain enhancement of antipodal tapered slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 395-400, 2015.
doi:10.1109/TAP.2014.2365044

14. Henely, S., The Avionics Hand Book, 18-TCAS II, Rockwell Collins, Cedar Rapids, 2001.

15. TCAS S72-1735-25, AIRNC 735, Sensor Systems Inc., Aircraft Antennas since, 1961.

16. Smith, D., S. Schultz, P. Markos, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physics Review B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104