Vol. 84
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-05-29
Design and Fabrication of Antennas Using 3D Printing
By
Progress In Electromagnetics Research C, Vol. 84, 119-134, 2018
Abstract
Due to a recent growth in three-dimension (3D) printing technology, engineers can fabricate affordable and versatile antennas; however, lossy conductive materials, inadequate antenna terminations, and simplistic designs which do not adequately utilize the available volume continue to limit the capabilities of 3D printed antennas. In this work, the dielectric constants of three polylactic acid (PLA) materials, dielectric PLA, magnetic PLA and conductive PLA, were measured using the coaxial transmission line method, and the results were compared with measurements using the commercially available coaxial probe method. Based on published dielectric constants for solid non-printed PLA, a variety of antenna designs were simulated and fabricated. Each of these antenna designs addressed a certain shortcoming faced by 3D printed antennas. The antennas were designed with a target resonant frequency of 2.45 GHz, an impedance bandwidth of at least 500 MHz, and a gain greater than 1.5 dBi. The three antennas presented here are a fractal bow-tie antenna (FBTA), a spiral antenna, and a Yagi-Uda antenna.
Citation
Jason Bjorgaard, Michael Hoyack, Eric Huber, Milad Mirzaee, Yi-Hsiang Chang, and Sima Noghanian, "Design and Fabrication of Antennas Using 3D Printing," Progress In Electromagnetics Research C, Vol. 84, 119-134, 2018.
doi:10.2528/PIERC18011013
References

1. Nayeri, P., M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, "3D printed dielectric reflectarrays: Low-cost high-gain antennas at sub-millimeter waves," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2000-2008, Apr. 2014.
doi:10.1109/TAP.2014.2303195

2. Floch, J.-M., B. El Jaafari, and A. El Sayed Ahmed, "New compact broadband GSM/UMTS/LTE antenna realized by 3D printing," The 9th European Conference on Antennas and Propagation, Lisbon, Portugal, Apr. 2015.

3. Lopez, A. G., E. L. C. Ernesto, R. Chandra, and A. J. Johansson, "Optimization and fabrication by 3D printing of a volcano smoke antenna for UWB applications," 7th European Conference on Antennas and Propagation (EuCAP), 1471-1473, Apr. 2013.

4. Mirzaee, M., S. Noghanian, and Y. Chang, "Low-profile bowtie antenna with 3D printed substrate," Microw. Opt. Technol. Lett., Vol. 59, 706-710, 2017.
doi:10.1002/mop.30379

5. Ahmadloo, M. and P. Mousavi, "Application of novel integrated dielectric and conductive ink 3D printing technique for fabrication of conical spiral antennas," IEEE Antennas and Propagation Society International Symposium (APSURSI), 780-781, Jul. 2013.

6. Mirzaee, M., S. Noghanian, L. Wiest, and Y. Chang, "Developing flexible 3D printed antenna using conductive ABS materials," IEEE International Symposium on Antenna and Propagation and North American Radio Science Meeting 2015, 1308-1309, Jul. 2015.

7. Ahn, B. Y., E. B. Duoss, M. J. Motala, X. Guo, S.-I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, "Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes," Science, Vol. 323, No. 5921, 1590-1593, Mar. 2009.
doi:10.1126/science.1168375

8. Adams, J. J., S. C. Slimmer, J. A. Lewis, and J. T. Bernhard, "3D-printed spherical dipole antenna integrated on small RF node," Electron. Lett., Vol. 51, No. 9, 661-662, Apr. 2015.
doi:10.1049/el.2015.0256

9. "Antenna fabrication via direct print,", [online], available: http://www.sciperio.com/antenna/-antenna-fabrication.asp, Nov. 2017.
doi:10.1049/el.2015.0256

10. Bisognin, A., D. Titz, C. Luxey, G. Jacquemod, F. Ferrero, D. Lugara, A. Bisognin, R. Pilard, F. Gianesello, D. Gloria, J. R. Costa, C. Laporte, H. Ezzeddine, E. B. Lima, and C. A. Fernandes, "A 120 GHz 3D-printed plastic elliptical lens antenna with an IPD patch antenna source," IEEE International Conference on Ultra-Wide Band (ICUWB), 171-174, Sep. 2014.

11. Yi, H., S.-W. Qu, K. B. Ng, and C. H. Chan, "3-D printed discrete dielectric lens antenna with matching layer," International Symposium on Antennas and Propagation (ISAP), 115-116, Dec. 2014.

12. Bisognin, A., D. Titz, F. Ferrero, R. Pilard, C. A. Fernandes, J. R. Costa, C. Corre, P. Calascibetta, J.-M. Riviere, A. Poulain, C. Badard, F. Gianesello, C. Luxey, P. Busson, D. Gloria, and D. Belot, "3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system ," IEEE MTT-S International Microwave Symposium (IMS), 1-4, Jun. 2014.

13. Garlotta, D., "A literature review of Poly (Lactic Acid)," Journal of Polymers and the Environment, Vol. 9, No. 2, 63-84, Apr. 2001.
doi:10.1023/A:1020200822435

14. "Keysight technologies basics of measuring the dielectric properties of materials,", [online], available at http://literature.cdn.keysight.com/litweb/pdf/5989-2589EN.pdf, Nov. 2017.
doi:10.1023/A:1020200822435

15. Hoyack, M., J. Bjorgaard, E. Huber, M. Mirzaee, and S. Noghanian, "Connector design for 3D printed antennas," 2016 IEEE International Symposium on Antennas and Propagation, Fajardo, Puerto Rico, June.-Jul. 2016.

16. Neetu, S. B. and R. K. Bansal, "Design and analysis of fractal antennas based on Koch and Sierpinski fractal geometries," International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 2, No. 6, 1-7, Jun. 2013.

17. Amin, Y., Q. Chen, L. R. Zheng, and H. Tenhunen, "Design and fabrication of wideband Archimedean spiral antenna based ultra-low cost ``green" modules for RFID sensing and wireless applications," Progress In Electromagnetics Research, Vol. 130, 241-256, 2012.
doi:10.2528/PIER12070807

18. Liu, Q., C.-L. Ruan, L. Peng, and W.-X. Wu, "A novel compact Archimedean spiral antenna with gap-loading," Progress In Electromagnetics Research Letters, Vol. 3, 169-177, 2008.
doi:10.2528/PIERL08032002

19. Pozar, D. M., "Field analysis of transmission lines," Microwave Engineering, 1st Edition, Ch. 3, sec. 2-9, 72-107, Addison-Wesley, 1990.

20. Huber, E., M. Mirzaee, J. Bjorgaard, M. Hoyack, S. Noghanian, and I. Chang, "Dielectric property measurement of PLA," 2016 International Conference on Electro/Information Technology, Grand Forks, ND, USA, May 2016.

21. Ansys, [online], , available at http://www.ansys.com/Products/Simulation+ Technology/-Electronics/Signal+ Integrity/ANSYS+ HFSS, Nov. 2017.

22. CST Microwave Studio, [online], , available at https://www.cst.com/Products/CSTMWS, Nov. 2017.

23. Nakatsuka, T., "Polyactic acid-coated cable," Fukikura Technical Review, No. 40, 2011.

24. Bare Conductive Electric Paint, [online], , available at https://www.bareconductive.com/shop/electric-paint-10ml/, Nov. 2017.

25. Caswell Copper Conductive Paint, [online], , available at http://www.caswellplating.com/copper-conductive-paint-4oz.html#, Nov. 2017.

26. Galium by RotoMetal, https://rotometals.com/gallium/, Nov. 2017.