Vol. 81
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-02-21
Scalable Preparation of Broadband Ultrablack Graphite Nanoneedle Surfaces through Self-Masked Etching
By
Progress In Electromagnetics Research C, Vol. 81, 191-197, 2018
Abstract
Ultrablack materials play an essential role in astronomical observation and many thermal applications. Many material systems such as vertically aligned carbon nanotubes have produced extraordinarily high absorption, but require complicated fabrication. Here we report a single step self-masked etching process performed on compressed-coal graphite plates on a silicon substrate, which produces an ultrablack material with 0.7% hemispherical reflectance in the visible region and specular reflectance below 0.7% between 850 nm and 10 μm. Nanoscopic pieces of silicon are ripped off the substrate and deposit on the graphite resulting in carbon nanoneedle structures, which grow linearly with etching time reaching a height of 5.7 μm after 60 minutes.
Citation
Tingbiao Guo, Yaoran Sun, Sailing He, Jiang Yang, Mengzhu Hu, Wen Mu, and Julian Evans, "Scalable Preparation of Broadband Ultrablack Graphite Nanoneedle Surfaces through Self-Masked Etching," Progress In Electromagnetics Research C, Vol. 81, 191-197, 2018.
doi:10.2528/PIERC17113006
References

1. Kuhn, T. S., Black-body Theory and the Quantum Discontinuity, 1894-1912, University of Chicago Press, Chicago, 1987.

2. Hagopian, J. G., S. A. Getty, M. Quijada, J. Tveekrem, R. Shiri, P. Roman, J. Butler, G. Georgiev, J. Livas, and C. Hunt, "Multiwalled carbon nanotubes for stray light suppression in space flight instruments," Proc. SPIE, 2010.

3. Theocharous, E., C. J. Chunnilall, R. Mole, D. Gibbs, N. Fox, N. Shang, G. Howlett, B. Jensen, R. Taylor, and J. R. Reveles, "The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications," Opt. Express, Vol. 22, No. 6, 7290-7307, 2014.
doi:10.1364/OE.22.007290

4. Kodama, S., M. Horiuchi, K. Kuroda, and T. Kunii, "Ultra-black nickel-phosphorus alloy optical absorber," 6th IEEE Instrumentation and Measurement Technology Conference, 1989, IMTC-89, 1989.

5. Brown, R. J., P. J. Brewer, and M. J. Milton, "The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces," J. Mater. Chem., Vol. 12, No. 9, 2749-2754, 2002.
doi:10.1039/B204483H

6. Yang, Z.-P., L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, "Experimental observation of an extremely dark material made by a low-density nanotube array," Nano Lett., Vol. 8, No. 2, 446-451, 2008.
doi:10.1021/nl072369t

7. Mizuno, K., J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, "A black body absorber from vertically aligned single-walled carbon nanotubes," Proc. Natl. Acad. Sci., Vol. 106, No. 15, 6044-6047, 2009.
doi:10.1073/pnas.0900155106

8. Zhou, L., Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, "Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation," Science Adv., Vol. 2, No. 4, e1501227, 2016.
doi:10.1126/sciadv.1501227

9. Lenert, A., D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, "A nanophotonic solar thermophotovoltaic device," Nat. Nanotechnol., Vol. 9, No. 2, 126-130, 2014.
doi:10.1038/nnano.2013.286

10. Lehman, J., A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, "Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium antalate," Nano Lett., Vol. 10, No. 9, 3261-3266, 2010.
doi:10.1021/nl100582j

11. Theocharous, E., R. Deshpande, A. Dillon, and J. Lehman, "Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared," Appl. Opt., Vol. 45, No. 6, 1093-1097, 2006.
doi:10.1364/AO.45.001093

12. Mellouki, I., N. Bennaji, and N. Yacoubi, "IR characterization of graphite black-coating for cryogenic detectors," Infrared Phys. Technol., Vol. 50, No. 1, 58-62, 2007.
doi:10.1016/j.infrared.2006.05.002

13. Granqvist, C., "Radiative heating and cooling with spectrally selective surfaces," Appl. Opt., Vol. 20, No. 15, 2606-2615, 1981.
doi:10.1364/AO.20.002606

14. Her, T.-H., R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett., Vol. 73, No. 12, 1673-1675, 1998.
doi:10.1063/1.122241

15. Peng, K.-Q., Y.-J. Yan, S.-P. Gao, and J. Zhu, "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Adv. Mater., Vol. 14, No. 16, 1164, 2002.
doi:10.1002/1521-4095(20020816)14:16<1164::AID-ADMA1164>3.0.CO;2-E

16. Jansen, H., M. de Boer, R. Legtenberg, and M. Elwenspoek, "The black silicon method: A universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control," JMiMi, Vol. 5, No. 2, 115, 1995.

17. Sun, Y., J. Evans, F. Ding, S. Wang, L. Mo, and S. He, "Patterning of graphite nanocones for broadband solar spectrum absorption," AIP Adv., Vol. 5, No. 6, 067139, 2015.
doi:10.1063/1.4922894

18. Sun, Y., J. Evans, F. Ding, N. Liu, W. Liu, Y. Zhang, and S. He, "Bendable, ultra-black absorber based on a graphite nanocone nanowire composite structure," Opt. Express, Vol. 23, No. 15, 20115-20123, 2015.
doi:10.1364/OE.23.020115

19. Letellier, M., J. Macutkevic, P. Kuzhir, J. Banys, V. Fierro, and A. Celzard, "Electromagnetic properties of model vitreous carbon foams," Carbon, Vol. 122, 217-227, 2017.
doi:10.1016/j.carbon.2017.06.080

20. Kuzhir, P. P., A. G. Paddubskaya, N. I. Volynets, K. G. Batrakov, T. Kaplas, P. Lamberti, R. Kotsilkova, and P. Lambin, "Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range," J. Nanophotonics, Vol. 11, No. 3, 032504-032504, 2017.
doi:10.1117/1.JNP.11.032504

21. Shah, A., P. Stenberg, L. Karvonen, R. Ali, S. Honkanen, H. Lipsanen, N. Peyghambarian, M. Kuittinen, Y. Svirko, and T. Kaplas, "Pyrolytic carbon coated black silicon," Sci. Rep., Vol. 6, No. 1, 25922, 2016.
doi:10.1038/srep25922

22. Hsu, C.-H., H.-C. Lo, C.-F. Chen, C. T. Wu, J.-S. Hwang, D. Das, J. Tsai, L.-C. Chen, and K.-H. Chen, "Generally applicable self-masked dry etching technique for nanotip array fabrication," Nano Lett., Vol. 4, No. 3, 471-475, 2004.
doi:10.1021/nl049925t

23. Huang, Y.-F., S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, and Y.-H. Chang, "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures," Nat. Nanotechnol., Vol. 2, No. 12, 770-774, 2007.
doi:10.1038/nnano.2007.389