Vol. 80
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-01-22
A Novel High Directive Willis-Sinha Tapered Slot Antenna for GPR Application in Detecting Landmine
By
Progress In Electromagnetics Research C, Vol. 80, 181-198, 2018
Abstract
novel Ultra-wideband Willis-Sinha Tapered Slot antenna for landmine detection using Ground Penetrating Radar (GPR) system with enhanced gain and directivity is presented. The structure is constructed on a 235x270 mm2 FR4 dielectric substrate. The antenna is fed by a novel tapered coplanar waveguide (CPW) to coplanar stripline (CPS) transition feed. The antenna's impedance bandwidth is extended by adding an antenna arm constructing parabola shape with the antenna element. The antenna has a corrugated structure along the antenna outer edges to improve radiation efficiency and get higher directivity. Also, a mushroom-like circular EBG structure is used in the lower side of the antenna arm to reduce interference and enhance front-to-back ratio (F/B ratio). A partial substrate removal, like circular cylinders inside the substrate, is aligned with the antenna tapered profile to obtain better radiation efficiency and enhance antenna gain. The operational bandwidth of this antenna extends from 0.18 to 6.2 GHz. The minimum return loss reaches 60 dB. The average directivity reaches 12.2 dBi while the gain and radiation efficiency are 11.8 dBi and 92%, respectively with gain enhancement of 195% due to using corrugated structure and air cavities. The front-to-back ratio (F/B ratio) is 23 dB. Also, a size reduction of 48% is achieved due to using extended arm. The antenna performance was simulated and measured. Good agreement was found between numerical and experimental results. The proposed antenna is suitable for various ultra-wideband applications especially in landmine detection. The design of the proposed antenna is given in very simple five design steps.
Citation
Mohammed Mahmoud Mohanna, Esmat A. F. Abdallah, Hadia El-Hennawy, and Magdy Ahmed Attia, "A Novel High Directive Willis-Sinha Tapered Slot Antenna for GPR Application in Detecting Landmine," Progress In Electromagnetics Research C, Vol. 80, 181-198, 2018.
doi:10.2528/PIERC17111904
References

1. Huici, M. A. and F. Giovanneschi, "A combined strategy for landmine detection and identification using synthetic GPR responses," Journal of Applied Geophysics, Vol. 99, No. 1, 154-165, Dec. 2013.
doi:10.1016/j.jappgeo.2013.08.006

2. Tsipis, K., "Report on the landmine brainstorming workshop," Sci. Technol. Int. Security Program, MIT, Cambridge, MA, 1996.

3. Giannakis, I., A. Giannopoulos, and C. Warren, "A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 37-51, Jan. 2016.
doi:10.1109/JSTARS.2015.2468597

4. Sai, B. and L. P. Ligthart, "GPR phase-based techniques for profiling rough surfaces and detecting small, low-contrast landmines under flat ground," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 2, 318-326, Feb. 2004.
doi:10.1109/TGRS.2003.817204

5. Walker, P. D. and M. R. Bell, "Non-iterative techniques for GPR imaging through a non-planar air-ground interface," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 10, 2213-2223, Oct. 2002.
doi:10.1109/TGRS.2002.802458

6. Carin, L., J. Sichina, and J. F. Harvey, "Microwave underground propagation and detection," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 945-952, Mar. 2002.
doi:10.1109/22.989977

7. El-Shenawee, M., C. Rappaport, E. L. Miller, and M. B. Silevitch, "Three dimensional subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: Use of the steepest descent fast multipole method," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 6, 1174-1182, Jun. 2001.
doi:10.1109/36.927436

8. Shao, J., G. Fang, Y. Ji, K. Tan, and H. Yin, "Design of a low-profile dual exponentially tapered slot antennas," IEEE Antenna and Wireless Propagation Letters, Vol. 12, 972-975, 2013.
doi:10.1109/LAWP.2013.2276403

9. Garg, R., I. Bahl, and M. Bozzi, Microstrip Lines and Slot Lines, 3rd Ed., 2013.

10. Abuhalima, S., E. Abdallah, and D. Mohamed, "Ultra wideband elliptical microstrip antenna using different taper lines for feeding," 11th WSEAS International Conference on Communications, 144-149, Greece, Jul. 26–28, 2007.

11. Mao, S. G., C. T. Hwang, R. Wu, and C. H. Chen, "Analysis of coplanar waveguide-to-coplanar stripline transitions," IEEE Trans. on Antennas and Propag., Vol. 48, No. 1, 23-29, Jan. 2000.

12. Zhang, F., G. Y. Fang, Y. J. Ju, and J.-J. Shao, "A novel compact double exponentially tapered slot antenna (DETSA) for GPR applications," IEEE Trans. Antennas Propag., Vol. 11, 195-198, 2011.
doi:10.1109/LAWP.2011.2123868

13. Wang, Z. and H. Zhang, "Improvement in a high gain UWB antenna with corrugated edges," Progress In Electromagnetics Research C, Vol. 6, 159-166, 2009.
doi:10.2528/PIERC09011404

14. Moosazadeh, M. and S. Kharkovsky, "A compact high-gain and front-to-back ratio elliptically tapered antipodal vivaldi antenna with trapezoid-shaped dielectric lens," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 552-555, 2016.
doi:10.1109/LAWP.2015.2457919

15. Liu, Y., W. Zhou, S. Yang, W. Li, P. Li, and S. Yang, "A novel miniaturized vivaldi antenna using tapered slot edge with resonant cavity structure for ultrawideband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1881-1884, 2016.
doi:10.1109/LAWP.2016.2542269

16. Omar, S. A., A. Iqbal, O. A. Saraereh, and A. Basir, "An array of M-shaped Vivaldi antennas for UWB applications," Progress In Electromagnetics Research Letters, Vol. 68, 67-72, 2017.

17. Yeap, S. B. and Z. N. Chen, "Microstrip patch antennas with enhanced gain by partial substrate removal," IEEE Trans. Antennas and Propagation, Vol. 58, No. 9, 2811-2816, Sept. 2010.
doi:10.1109/TAP.2010.2052572

18. Grigorievich, T., L. Kempen, H. Sahli, J. Sachs, and M. Sato, "Investigation of time-frequency features for GPR landmine discrimination," IEEE Trans. on Geosciences and Remote Sensing, Vol. 45, No. 1, 118-129, Jan. 2007.
doi:10.1109/TGRS.2006.885077

19. Cohn, S. B., "Slot line on a dielectric substrate," IEEE Trans. Microwave Theory Techniques, Vol. 17, 768-778, Oct. 1969.

20. Abbosh, A., "Gain and bandwidth optimization of compact UWB tapered slot antennas," International Journal of Microwave and Optical Technology, Vol. 2, No. 3, 222-225, 2007.