Vol. 80
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-12-07
Spatial Power Combining of VLF Umbrella Antenna Arrays with Multi-Delay Lines
By
Progress In Electromagnetics Research C, Vol. 80, 79-87, 2018
Abstract
The output power of antennas is an important factor affecting the radiation performance of umbrella antenna arrays. Considering the power limit of very-low-frequency (VLF) umbrella arrays and the uncontrollable directivity, we propose a novel method for the spatial power-combining (SPC) of VLF umbrella arrays. Using multiple groups of feeders, the problem of phase shifting of the signals can be solved for VLF arrays. In the high-frequency portion of the VLF range (25-30 kHz), this novel method can improve the efficiency of VLF arrays by 26% in the special directivity. A model of a trideco-tower umbrella antenna array is established in the FEKO simulation software. The simulation results show that, compared with the in-phase feeding, the VLF transmitting antenna array forms the main beam in all directions. The array gain of the umbrella phased array in the 0° (180°) beam position is larger than 1.1 dB. The front-to-back ratio of the arrays is 3.7 dB. Compared with the in-phase feed mode, the directivity of the phased array enhances and the efficiency increases markedly. The simulation results demonstrate the effectiveness of the proposed method.
Citation
Bin Li, Chao Liu, and Ying-Hui Dong, "Spatial Power Combining of VLF Umbrella Antenna Arrays with Multi-Delay Lines," Progress In Electromagnetics Research C, Vol. 80, 79-87, 2018.
doi:10.2528/PIERC17110502
References

1. Dong, Y. H., C. Liu, G. L. Dai, and Y. L. Yan, "VLF transmit antenna impedance characteristic based on top-load configuration," Chinese Journal of Radio Science, Vol. 29, No. 4, 763-768, 2014.

2. Madanayake, A., S. Choi, M. Tarek, S. Dharmesena, et al. "Energy-efficient ULF/VLF transmitters based on mechanically-rotating dipoles," Engineering Research Conference (MERCon), 230-235, Moratuwa, Sri Lanka, May 29–31, 2017.

3. Yan, Y. L., C. Liu, H. N. Wu, and Y. H. Dong, "Non-foster matching network design for VLF receive loop antenna," IEICE Electronics Express, Vol. 13, No. 12, 1-10, 2016.
doi:10.1587/elex.13.20160460

4. Li, H.-Y., J. Zhan, Z.-S. Wu, and P. Kong, "Numerical simulations of ELF/VLF wave generated by modulated beat-wave ionospheric heating in high latitude regions," Progress In Electromagnetics Research M, Vol. 50, 55-63, 2016.
doi:10.2528/PIERM16062604

5. Rozhnoi, A., M. Solovieva, M. Parrot, M. Hayakawa, P.-F. Biagi, et al. "VLF/LF signal studies of the ionospheric response to strong seismic activity in the Far Eastern region combining the DEMETER and ground-based observations," Physics and Chemistry of the Earth, Vol. 85–86, 141-149, 2015.
doi:10.1016/j.pce.2015.02.005

6. Liu, Y. J., F. Liu, D. B. Yang, J. Xu, and Z. Zhang, "Type of active impulse noise suppressing method based on double-loop antennas in very low frequency/ultra-low frequency coupling communications," IET Microwaves, Antennas & Propagation, Vol. 11, No. 6, 867-873, 2017.
doi:10.1049/iet-map.2016.0807

7. Liu, Y. W. and X. B. Su, "Analysis and design of a new 2×2 tapered finline array for spatial power combining," Journal of Electronics & Information Technology, Vol. 32, No. 2, 470-475, 2010.
doi:10.3724/SP.J.1146.2009.00017

8. Boaventura, A., A. Coallado, A. Georgiadis, and N. B. Carvalho, "Spatial power combining of multi-sine signals for wireless power transmission applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 1022-1030, 2014.
doi:10.1109/TMTT.2014.2300452

9. Song, K., J. F. Zhang, S. Y. Hu, and Y. Fan, "Ku-band 200-W pulsed power amplifier based on waveguide spatially power-combining technique for industrial applications," IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, 4274-4280, 2014.
doi:10.1109/TIE.2013.2284137

10. Shan, X. Y. and Z. X. Shen, "An eight-way power combiner based on a transition between rectangular waveguide and multiple microstrip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 7, 2557-2561, 2013.
doi:10.1109/TMTT.2013.2264291

11. Staiman, D., M. Breese, and W. Patton, "New technique for combining solid-state sources," IEEE Journal of Solid-state Circuits, Vol. 3, No. 3, 238-243, 1968.
doi:10.1109/JSSC.1968.1049891

12. Zhang, Y. S. and W. Hong, "A millimeter-wave gain enhanced multi-beam antenna based on a coplanar cylindrical dielectric lens," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3485-3488, 2012.
doi:10.1109/TAP.2012.2194646

13. Harvey, J., E. Brown, and D. Rutledge, "Spatial power combining for high-power transmitters," Microwave Magazine, Vol. 1, No. 4, 48-59, 2000.
doi:10.1109/6668.893246

14. Yin, K., K. Zhang, and J. Xu, "Characterization and design of millimeter-wave full-band waveguidebased spatial power divider/combiner," Progress In Electromagnetics Research C, Vol. 50, 65-74, 2014.
doi:10.2528/PIERC14031604

15. Ortega, B., J. Mora, and R. Chulia, "Optical beamformer for 2-D phased array antenna with subarray partitioning capability," IEEE Photonics Journal, Vol. 8, No. 3, 1-9, 2017.
doi:10.1109/JPHOT.2016.2550323

16. Guo, L. T., W. H. Huang, C. Chang, Y. Liu, et al. "Studies of a leaky-wave phased array antenna for high-power microwave applications," IEEE Transactions on Plasma Science, Vol. 44, No. 10, 2366-2375, 2016.
doi:10.1109/TPS.2016.2601105

17. Wang, B. and K.-M. Huang, "Spatial microwave power combining with anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 114, 195-210, 2011.
doi:10.2528/PIER11010604

18. Lu, G., F. X. Wang, B. Chen, and L. Zhou, "Analysis of electrical properties of multi-VLF thirteentower umbrella antenna array," Journal of Navel University of Engineering, Vol. 26, No. 4, 46-49, 2014.

19. Chen, Q. J., Q. X. Jiang, F. L. Zeng, and C. B. Song, "Single frequency spatial power combining using sparse array based on time reversal of electromagnetic wave," Acta Physica Sinica, Vol. 64, No. 20, 0204101, 2015.

20. Chen, S. C., Y. L. Yan, and J. J. Ling, "Control technique of dynamic tuning of VLF transmitting antennas," Journal of Information Engineering University, Vol. 16, No. 4, 424-430, 2015.

21. Clive, P., G. Stuart, M. John, and J. R. Daniel, "Theory and practice of modern antenna range measurements,", The Institution of Engineering and Technology, London, 2014.

22. Fu, Z. H., "Constrained minimum power combination for broadband beamformer design in the STFT domain," Frontiers of Computer Science, Vol. 11, No. 3, 408-418, 2017.
doi:10.1007/s11704-016-6110-5

23. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley Press, Hoboken, 2016.

24. Li, B., C. Liu, and H. Wu, "A moment-based study on the impedance effect of mutual coupling for VLF umbrella antenna arrays," Progress In Electromagnetics Research C, Vol. 76, 75-86, 2017.
doi:10.2528/PIERC17061702