Vol. 82
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-02-25
First Principles Model of Electric Cable Braid Penetration with Dielectrics
By
Progress In Electromagnetics Research C, Vol. 82, 1-11, 2018
Abstract
In this paper, we report the formulation to account for dielectrics in a first principles multipole-based cable braid electromagnetic penetration model. To validate our first principles model, we consider a one-dimensional array of wires, which can be modeled analytically with a multipole-conformal mapping expansion for the wire charges; however, the first principles model can be readily applied to realistic cable geometries. We compare the elastance (i.e. the inverse of the capacitance) results from the first principles cable braid electromagnetic penetration model to those obtained using the analytical model. The results are found in good agreement up to a radius to half spacing ratio of 0.5-0.6, depending on the permittivity of the dielectric used, within the characteristics of many commercial cables. We observe that for typical relative permittivities encountered in braided cables, the transfer elastance values are essentially the same as those of free space; the self-elastance values are also approximated by the free space solution as long as the dielectric discontinuity is taken into account for the planar mode.
Citation
Salvatore Campione, Larry Kevin Warne, William L. Langston, and Lorena I. Basilio, "First Principles Model of Electric Cable Braid Penetration with Dielectrics," Progress In Electromagnetics Research C, Vol. 82, 1-11, 2018.
doi:10.2528/PIERC17103010
References

1. Vance, E. F., Coupling to Shielded Cables, R. E. Krieger, 1987.

2. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, John Wiley and Sons, 2008.
doi:10.1002/9780470268483

3. Lee, K. S. H., EMP Interaction: Principles, Techniques, and Reference Data, Hemisphere Publishing Corp., Washington, 1986.

4. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, John Wiley & Sons, Inc., New York, 1997.

5. Warne, L. K., W. L. Langston, L. I. Basilio, and W. A. Johnson, "Cable braid electromagnetic penetration model," Sandia National Laboratories Report, SAND2015-5019, Albuquerque, NM, 2015.

6. Warne, L. K., W. L. Langston, L. I. Basilio, and W. A. Johnson, "First principles cable braid electromagnetic penetration model," Progress In Electromagnetics Research B, Vol. 66, 63-89, 2016.
doi:10.2528/PIERB15121806

7. Campione, S., S., L. I. Basilio, L. K. Warne, H. G. Hudson, and W. L. Langston, "Shielding effectiveness of multiple-shield cables with arbitrary terminations via transmission line analysis," Progress In Electromagnetics Research C, Vol. 65, 93-102, 2016.
doi:10.2528/PIERC16032403

8. Demoulin, B., P. Degauque, M. Cauterman, and R. Gabillard, "Shielding performance of triply shielded coaxial cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 22, 173-180, 1980.
doi:10.1109/TEMC.1980.303877

9. Lee, K. S. H. and C. F. Baum, "Application of modal analysis to braided-shield cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 17, 159-169, 1975.
doi:10.1109/TEMC.1975.303403

10. Johnson, W. A., L. K. Warne, L. I. Basilio, R. S. Coats, J. D. Kotulski, and R. E. Jorgenson, "Modeling of braided shields," Proceedings of Joint 9th International Conference on Electromagnetics in Advanced Applications ICEAA 2005 and 11th European Electromagnetic Structures Conference EESE, 881-884, 2orino, Italy, 2005.

11. Campione, S., L. K. Warne, W. L. Langston, W. A. Johnson, R. S. Coats, and L. I. Basilio, "Multipole-based cable braid electromagnetic penetration model: Electric penetration case," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, 444-452, 2018.
doi:10.1109/TEMC.2017.2721101

12. Kley, T., "Optimized single-braided cable shields," IEEE Transactions on Electromagnetic Compatibility, Vol. 35, 1-9, 1993.
doi:10.1109/15.249390

13. Takashima, T. and R. Ishibashi, "Electric fields in dielectric multi-layers calculated by digital computer," IEEE Transactions on Electrical Insulation, Vol. 13, 37-44, 1978.
doi:10.1109/TEI.1978.298097

14. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd Ed., Pergamon Press, 1984.

15. Langmuir, R. V., Electromagnetic Fields and Waves, McGraw Hill, 1961.

16. Larsen, T., "A Survey of the theory of wire grids," IRE Transactions on Microwave Theory and Techniques, Vol. 10, 191-201, 1962.
doi:10.1109/TMTT.1962.1125490

17. Casey, K. F., "Electromagnetic shielding behavior of wire-mesh screens," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, 298-306, 1988.
doi:10.1109/15.3309

18. Smythe, W. R., Static and Dynamic Electricity, Hemisphere Publishing Corp., New York, 1989.

19. Schelkunoff, S. A., Electromagnetic Waves, D. Van Nostrand Company, Inc., New York, NY, 1943.

20. Ramo, S., J. R. Whinnery, and R. V. Duzer, Fields and Waves in Communication Electronics, John Wiley & Sons, Inc., New York, NY, 1965.

21. Warne, L. K., W. L. Langston, and S. Campione, "Approximations to wire grid elastance," Sandia National Laboratories Report, SAND2016-6180, Albuquerque, NM, 2016.

22. Campione, S., L. K. Warne, L. I. Basilio, C. D. Turner, K. L. Cartwright, and K. C. Chen, "Electromagnetic pulse excitation of finite- and infinitely-long lossy conductors over a lossy ground plane," Journal of Electromagnetic Waves and Applications, Vol. 31, 209-224, 2017.
doi:10.1080/09205071.2016.1270776