Vol. 80
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-01-19
Torque Ripple Reduction in a SynRM at a Constant Average Torque by Means of Current Harmonics Injection
By
Progress In Electromagnetics Research C, Vol. 80, 167-180, 2018
Abstract
This paper studies the impact of current harmonics on the synchronous reluctance machine's average torque and torque ripple. The electromagnetic model of a general m-phase synchronous reluctance machine which integrates the inductance and current harmonics is developed. This model shows that there exist two mechanisms that generate an average torque with a non-zero average value: the proper contribution of the current harmonics and the interaction between them. This model is then used in the case of a 2-phase synchronous reluctance machine with a common transversally laminated anisotropic rotor. This machine design shows negligible inductance harmonics with respect to its fundamental value. Therefore, it has been found that the interaction between the 3rd and 5th current harmonics generates a torque equivalent to the torque generated by the fundamental current component. A locus of the current harmonic components that deliver a constant torque is determined. Furthermore, we have found that, on this locus, the machine torque ripple decreases signifi cantly. Experimental data validate the developed theoretical work and show that at the same torque, the torque ripple is reduced from 20% to 4%.
Citation
Samer Yammine, Carole Henaux, Maurice Fadel, and Frederic Messine, "Torque Ripple Reduction in a SynRM at a Constant Average Torque by Means of Current Harmonics Injection," Progress In Electromagnetics Research C, Vol. 80, 167-180, 2018.
doi:10.2528/PIERC17101801
References

1. Al-Nuaim, N. A. and H. A. Toliyat, "A novel method for modeling dynamic air-gap eccentricity in synchronous machines based on modified winding function theory," IEEE Trans. Energy Convers., Vol. 13, No. 2, 156-162, 1998.
doi:10.1109/60.678979

2. Barcaro, M., N. Bianchi, M. Guarnieri, and P. Alotto, "Optimization of interior pm motors with machaon rotor flux barriers," IEEE Trans. Magn., Vol. 47, No. 5, 958-961, 2011.
doi:10.1109/TMAG.2010.2073450

3. Bolognagni, S., D. Bon, P. M. Dai, and N. Bianchi, "Torque harmonic compensation in a synchronous reluctance motor," IEEE Trans. Energy Convers., Vol. 23, No. 2, 466-473, June 2008.
doi:10.1109/TEC.2007.914357

4. Bolognagni, S., D. Bon, P. M. Dai, and N. Bianchi, "Rotor flux-barrier design for torque ripple reduction in synchronous reluctance and PM-assisted synchronous reluctance motors," IEEE Trans. Ind. Appl., Vol. 45, No. 3, 921-928, 2009.
doi:10.1109/TIA.2009.2018960

5. Vagati, A., G. Pellegrino, E. Armando, P. Guglielmi, and B. Boazzo, "Multipolar ferrite-assisted synchronous reluctance machines: A general design approach," IEEE Trans. Ind. Electron., Vol. 62, No. 2, 832-845, 2015.
doi:10.1109/TIE.2014.2349880

6. Tutelea, L. N., L. Parsa, D. Dorrell, and I. Boldea, "Automotive electric propulsion systems with reduced or no permanent magnets: An overview," IEEE Trans. Ind. Electron., Vol. 61, No. 10, 5696-5711, October 2014.

7. Xu, B., L. Cai, and H. Guan, "Low-cost ferrite PM-assisted synchronous reluctance machine for electric vehicles," IEEE Trans. Ind. Electron., Vol. 61, No. 10, 5741-5748, October 2014.

8. Faiz, J. and I. Tabatabaei, "Extension of winding function theory for nonuniform air gap in electric machinery," IEEE Trans. Magn., Vol. 38, No. 6, 3654-3657, November 2002.
doi:10.1109/TMAG.2002.804805

9. Kamper, M. J., S. Gerber, and E. Howard, "Flux barrier and skew design optimisation of reluctance synchronous machines," 2014 Int. Conf. on Electrical Machines (ICEM), 1186-1192, September 2014.

10. Ikaheimo, J., et al. "Synchronous high-speed reluctance machine with novel rotor construction," IEEE Trans. Ind. Electron., Vol. 61, No. 6, 2969-2975, June 2014.
doi:10.1109/TIE.2013.2253077

11. Hsieh, M. F., H. F. Kuo, M. C. Tsai, and I. Lin, "Improved accuracy for performance evaluation of synchronous reluctance motor," IEEE Trans. Magn., No. 99, 1-1, 2015.
doi:10.1109/TMAG.2015.2457956

12. Magnussen, F., C. Sadarangani, and R. R. Moghaddam, "Theoretical and experimental reevaluation of synchronous reluctance machine," IEEE Trans. Ind. Electron., Vol. 57, No. 1, 6-13, January 2010.
doi:10.1109/TIE.2009.2025286

13. Magnussen, F., C. Sadarangani, and R. R. Moghaddam, "Novel rotor design optimization of synchronous reluctance machine for low torque ripple," 20th Int. Conf. Electrical Machines (ICEM), 720-724, September 2012.

14. Moghaddam, R.-R. and F. Gyllensten, "Novel high-performance SynRM design method: An easy approach for a complicated rotor topology," IEEE Trans. Ind. Electron., Vol. 61, No. 9, 5058-5065, September 2014.
doi:10.1109/TIE.2013.2271601

15. Ooi, S., Y. Inoue, M. Sanada, and S. Morimoto, "Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications," IEEE Trans. Ind. Electron., Vol. 61, No. 10, 5749-5756, October 2014.

16. Neti, P. and S. Nandi, "Determination of effective air-gap length of synchronous reluctance motors (SynchRel) from experimental data," IEEE Trans. Ind. Appl., Vol. 42, No. 2, 454-464, March 2006.
doi:10.1109/TIA.2005.863899

17. Kim, S. I., J. P. Hong, J. H. Lee, and J. M. Park, "Rotor design on torque ripple reduction for a synchronous reluctance motor with concentrated winding using response surface methodology," IEEE Trans. Magn., Vol. 42, No. 10, 3479-3481, October 2006.

18. Hiramto, K., S.Morimoto, Y. Takeda, and M. Sanada, "Torque ripple improvement for synchronous reluctance motor using asymmetric flux barrier arrangement," Conf. Rec. Industry Applications Conf. 38th IAS Annu. Meeting, Vol. 1, 250-255, October 2003.

19. Schmitz, N. L., Introductory Electromechanics, Ronald Press, 1965.

20. Faiz, J., H. Lesani, M. T. Nabavi-Rzavi, and I. Tabatabaei, "Modeling and simulation of a salientpole synchronous generator with dynamic eccentricity using modified winding function theory," IEEE Trans. Magn., Vol. 40, No. 3, 1550-1555, 2004.
doi:10.1109/TMAG.2004.826611

21. Tessarolo, A., "Accurate computation of multiphase synchronous machine inductances based on winding function theory," IEEE Trans. Energy Convers., Vol. 27, No. 4, 895-904, 2012.
doi:10.1109/TEC.2012.2219050

22. Tessarolo, A., et al. "On the analytical estimation of the airgap field in synchronous reluctance machine," 2014 Int. Conf. on Electrical Machines (ICEM), 239-244, September 2014.
doi:10.1109/ICELMACH.2014.6960187

23. Mezzarobba, M., M. Degano, and A. Tessarolo, "Analytical calculation of air-gap armature reaction field including slotting effects in fractional-slot concentrated-coil SPM multiphase machines," Int. Conf. Power Engineering, Energy and Electrical Drives (POWERENG), 1-6, 2011.

24. Rahimian, M., T. A. Lipo, and H. Toliyat, "DQ modeling of five phase synchronous reluctance machines including third harmonic of air-gap MMF," Conf. Rec. IEEE Industry Applications Society Annu. Meeting, Vol. 1, 231-237, September 1991.

25. Waikar Shailesh, P., A. Lipo Thomas, and H. A. Toliyat, "Analysis and simulation of five-phase synchronous reluctance machines including third harmonic of airgap MMF," IEEE Trans. Ind. Appl., Vol. 34, No. 2, 332-339, March 1998.
doi:10.1109/28.663476

26. Vas, P., Electrical Machines and Drives: A Space-vector Theory Approach, Vol. 25, Oxford University Press on Demand, 1992.

27. Villet, W. T. and M. J. Kamper, "Variable-Gear EV reluctance synchronous motor drives; An evaluation of rotor structures for position-sensorless control," IEEE Trans. Ind. Electron., Vol. 61, No. 10, 5732-5740, October 2014.
doi:10.1109/TIE.2013.2288231

28. Wang, K., et al. "Optimal slot/pole and flux-barrier layer number combinations for synchronous reluctance machines," 8th Int. Conf. and Exhibition on Ecological Vehicles and Renewable Energies (EVER), 1-8, March 2013.

29. Liu, T. H. and M. Y. Wei, "Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives," IEEE Trans. Ind. Electron., Vol. 60, No. 9, 3644-3657, September 2013.
doi:10.1109/TIE.2012.2206341

30. Xu, L., "Rotor structure selections of nonsine five-phase synchronous reluctance machines for improved torque capability," IEEE Trans. Ind. Appl., Vol. 36, No. 4, 1111-1117, July 2000.

31. Henaux, C., M. Fadel, S. Desharnais, L. Calegari, and S. Yammine, "Synchronous reluctance machine flux barrier design based on the flux line patterns in a solid rotor," 2014 Int. Conf. on Electrical Machines (ICEM), 297-302, September 2014.

32. Hock Beng Foo, G., D. M. Vilathgamuwa, D. L. Maskell, and X. Zhang, "An improved robust fieldweakeaning algorithm for direct-torque-controlled synchronous-reluctance-motor drives," IEEE Trans. Ind. Electron., Vol. 62, No. 5, 3255-3264, 2015.
doi:10.1109/TIE.2014.2386798