Vol. 81
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-01-25
SRR-Loaded Metamaterial-Inspired Electrically-Small Monopole Antenna
By
Progress In Electromagnetics Research C, Vol. 81, 11-19, 2018
Abstract
In this paper, a CPW-fed compact metamaterial-inspired monopole antenna is proposed for Industrial, Scientific and Medical radio band (ISM, 2.4-2.483 GHz). The proposed antenna consists of a T-shaped patch and a set of split ring resonators (SRRs). The miniaturization is attained after loading SRRs in proximity to the T-shaped radiator, which makes the antenna structure electrically small. The measured fractional bandwidth of the antenna is 4% (2.42-2.52 GHz), and its size is 0.22λo× 0.098λo×0.013λo. In addition, the electrically equivalent circuit of the proposed antenna is modeled, and the resonant frequency is calculated by using an analytical approach. Also, the permeability plot of SRRs is extracted using Nicolson Ross weir method. The measured peak gain and radiation efficiency of the antenna are obtained as 1.76 dBi and 78.5%. The simulated results and measured results are found in a good agreement.
Citation
Divya Chaturvedi, and Singaravelu Raghavan, "SRR-Loaded Metamaterial-Inspired Electrically-Small Monopole Antenna," Progress In Electromagnetics Research C, Vol. 81, 11-19, 2018.
doi:10.2528/PIERC17101202
References

1. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, No. 12, 1163-1175, 1948.
doi:10.1063/1.1715038

2. Wheeler, H. A., "Fundamental limitations of small antennas," IRE Proceedings, Vol. 35, l479-1484, 1947.

3. Ziolkowski, R. W. and A. Erentok, "At and below the Chu limit: passive and active broad bandwidth metamaterial-based electrically small antennas," IET Microwaves Antennas Propag., Vol. 1, No. 1, 116-128, 2007.
doi:10.1049/iet-map:20050342

4. Balanis, C. A., Antenna Theory Analysis and Design, 637-641, ISBN: 0-471-66782-X, John Wiley & Sons, New York, 2005.

5. Mclean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, 1996.
doi:10.1109/8.496253

6. Best, S. R., "Electrically small resonant planar antennas: optimizing the quality factor and bandwidth," IEEE Antennas Propag. Mag., Vol. 57, No. 3, 38-47, 2015.
doi:10.1109/MAP.2015.2437271

7. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, ISBN: 9780471669852, John Wiley & Sons, 2005.
doi:10.1002/0471754323

8. Si, L. M., W. Zhu, and H. J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 305-308, 2013.
doi:10.1109/LAWP.2013.2249037

9. Li, Y. and Q. Feng, "A compact tri-band monopole antenna with metamaterial loaded for WLAN/WiMAX applications," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 6, 772-782, 2013.
doi:10.1080/09205071.2013.786208

10. Psychoudakis, D. and L. V. John, "Conformal asymmetric meandered flare (AMF) antenna for body-worn applications," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 931-934, 2009.
doi:10.1109/LAWP.2009.2028662

11. Wang, P., G. J. Wen, Y.J. Huang, and Y. H. Sun, "Compact meander T-shaped monopole antenna for dual-band WLAN applications," Int. J. RF Microw. C.E., Vol. 23, No. 1, 67-73, 2013.
doi:10.1002/mmce.20652

12. Chi, P. L., K. M. Leong, R. Waterhouse, and T. Itoh, "A miniaturized CPW-fed capacitor-loaded slot-loop antenna," IEEE International Symposium on Signals (ISSSE’07), 595-598, 2007.
doi:10.1109/ISSSE.2007.4294546

13. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Electrically small patch antenna loaded with metamaterial," IETE J. Res., Vol. 56, No. 6, 373-9, 2014.

14. Gonghan, W. and F. Quanyuan, "A novel coplanar waveguide feed zeroth-order resonant antenna with resonant ring," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 774-777, 2014.
doi:10.1109/LAWP.2014.2317211

15. Yu, A., F. Yang, and A. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902

16. Chaturvedi, D., A. Kumar, and T. Shanmuganantham, "Asymmetric coplanar waveguide-fed CRLH-TL based antenna for WLAN/LTE applications," International conference on Circuit, Power and Computing Technologies (ICCPCT), 1-4, 2015.

17. Rajeshkumar, V. and S. Raghavan, "A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications," AEU-Int. J. Electron. C., Vol. 69, No. 1, 274-80, 2015.

18. Xu, H.-X., G.-M. Wang, Y.-Y. Lv, M.-Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409

19. Sarkar, D., K. Saurav, and K. V. Srivastava, "Multi-band microstrip-fed slot antenna loaded with split-ring resonator," Electron. Lett., Vol. 50, No. 2, 1498-1500, 2014.
doi:10.1049/el.2014.2625

20. Li, X. and J. Tian, "Low-profile fully-printed multi-frequency monopoles loaded with complementary metamaterial transmission line," Radioengineering, Vol. 24, No. 1, 64-9, 2015.

21. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microw. Theory Techn., Vol. 55, No. 12, 2865-73, 2007.
doi:10.1109/TMTT.2007.909611