Vol. 79
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-11-28
Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments
By
Progress In Electromagnetics Research C, Vol. 79, 209-223, 2017
Abstract
Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments --- one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.
Citation
Chenming Zhou, Ronald Jacksha, Lincan Yan, Miguel Reyes, and Peter Kovalchik, "Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments," Progress In Electromagnetics Research C, Vol. 79, 209-223, 2017.
doi:10.2528/PIERC17082907
References

1. Zhou, C., "Physics-based ultra-wideband channel modeling for tunnel/mining environments," 2015 IEEE Radio and Wireless Symposium (RWS), 92-94, Jan. 2015.
doi:10.1109/RWS.2015.7129760

2. "The mine improvement and new emergency response act of 2006 (MINER Act),", Jun. 2006, [Online], Available: http://www.msha.gov/MinerAct/MinerActSingleSource.asp.

3. Emslie, A., R. Lagace, and P. Strong, "Theory of the propagation of UHF radio waves in coal mine tunnels," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 2, 192-205, 1975.
doi:10.1109/TAP.1975.1141041

4. Mahmoud, S. and J. Wait, "Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels," Radio Science, Vol. 9, No. 12, 1147-1158, 1974.
doi:10.1029/RS009i012p01147

5. Lienard, M. and P. Degauque, "Natural wave propagation in mine environments," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 9, 1326-1339, 2000.
doi:10.1109/8.898765

6. Zhang, Y. P., G. X. Zheng, and J. Sheng, "Radio propagation at 900MHz in underground coal mines," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 5, 757-762, 2001.
doi:10.1109/8.929630

7. Sun, Z. and I. F. Akyildiz, "Channel modeling and analysis for wireless networks in underground mines and road tunnels," IEEE Transactions on Communications, Vol. 58, No. 6, 1758-1768, 2010.
doi:10.1109/TCOMM.2010.06.080353

8. Zhou, C., "Ray tracing and modal methods for modeling radio propagation in tunnels with rough walls," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2624-2634, 2017.
doi:10.1109/TAP.2017.2677398

9. Goddard, A. E., "Radio propagation measurements in coal mines at UHF and VHF," Proc. Through-Earth Electromagn., 15-17, 1973.

10. Boutin, M., A. Benzakour, C. L. Despins, and S. Affes, "Radio wave characterization and modeling in underground mine tunnels," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 2, 540-549, 2008.
doi:10.1109/TAP.2007.913144

11. Boutin, M., S. Affes, C. Despins, and T. Denidni, "Statistical modelling of a radio propagation channel in an underground mine at 2.4 and 5.8GHz," IEEE 61st Vehicular Technology Conference, VTC 2005-Spring, Vol. 1, 78-81, 2005.
doi:10.1109/VETECS.2005.1543253

12. Nerguizian, C., C. L. Despins, S. Aff`es, and M. Djadel, "Radio channel characterization of an underground mine at 2.4GHz," IEEE Transactions on Wireless Communications, Vol. 4, No. 5, 2441-2453, 2005.
doi:10.1109/TWC.2005.853899

13. Qaraqe, K. A., S. Yarkan, S. G¨uzelgoz, and H. Arslan, "Statistical wireless channel propagation characteristics in underground mines at 900MHz: A comparative analysis with indoor channels," Ad Hoc Networks, Vol. 11, No. 4, 1472-1483, 2013.
doi:10.1016/j.adhoc.2011.01.015

14. Yarkan, S. and H. Arslan, "Statistical wireless channel propagation characteristics in underground mines at 900 MHz," IEEE Military Communications Conference (MILCOM07), 1-7, IEEE, 2007.

15. Chehri, A., P. Fortier, and P. M. Tardif, "Large-scale fading and time dispersion parameters of UWB channel in underground mines," International Journal of Antennas and Propagation, Vol. 2008, 2008.
doi:10.1155/2008/806326

16. Qiu, R. C., C. Zhou, and Q. Liu, "Physics-based pulse distortion for ultra-wideband signals," IEEE Transactions on Vehicular Technology, Vol. 54, No. 5, 1546-1555, 2005.
doi:10.1109/TVT.2005.854033

17. Zhou, C. and R. C. Qiu, "Pulse distortion caused by cylinder diffraction and its impact on uwb communications," IEEE Transactions on Vehicular Technology, Vol. 56, No. 4, 2385-2391, 2007.
doi:10.1109/TVT.2007.897640

18. Valenzuela, R. A., "A ray tracing approach to predicting indoor wireless transmission," IEEE Vehicular Technology Conference, 214-218, 1993.

19. Uchida, K., C.-K. Lee, T. Matsunaga, T. Imai, and T. Fujii, "A ray tracing method for evaluating field distribution in tunnels," Electronics and Communications in Japan (Part I: Communications), Vol. 83, No. 10, 11-18, 2000.
doi:10.1002/(SICI)1520-6424(200010)83:10<11::AID-ECJA2>3.0.CO;2-N

20. Zhou, C., J. Waynert, T. Plass, and R. Jacksha, "Attenuation constants of radio waves in lossywalled rectangular waveguides," Progress In Electromagnetics Research, Vol. 142, 75-105, 2013.
doi:10.2528/PIER13061709

21. Porrat, D. and D. C. Cox, "UHF propagation in indoor hallways," IEEE Transactions on Wireless Communications, Vol. 3, No. 4, 1188-1198, 2004.
doi:10.1109/TWC.2004.828023

22. Kermani, M. H. and M. Kamarei, "A ray-tracing method for predicting delay spread in tunnel environments," IEEE International Conference on Personal Wireless Communications, 538-542, 2000.

23. Chen, S.-H. and S.-K. Jeng, "SBR image approach for radio wave propagation in tunnels with and without traffic," IEEE Transactions on Vehicular Technology, Vol. 45, No. 3, 570-578, 1996.
doi:10.1109/25.533772

24. Wang, T.-S. and C.-F. Yang, "Simulations and measurements of wave propagations in curved road tunnels for signals from gsm base stations," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 9, 2577-2584, 2006.
doi:10.1109/TAP.2006.880674

25. Marcatili, E. and R. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell System Technical Journal, Vol. 43, No. 4, 1783-1809, 1964.
doi:10.1002/j.1538-7305.1964.tb04108.x

26. Laakmann, K. D. and W. H. Steier, "Waveguides: Characteristic modes of hollow rectangular dielectric waveguides," Applied Optics, Vol. 15, No. 5, 1334-1340, 1976.
doi:10.1364/AO.15.001334

27. Molisch, A. F., Wireless Communications, John Wiley Sons, 2010.

28. Zhou, C., N. Guo, and R. C. Qiu, "Time-reversed ultra-wideband (UWB) multiple input multiple output (MIMO) based on measured spatial channels," IEEE Transactions on Vehicular Technology, Vol. 58, No. 6, 2884-2898, 2009.
doi:10.1109/TVT.2008.2012109

29. Garcia-Pardo, C., M. Lienard, P. Degauque, J.-M. Molina-Garcia-Pardo, and L. Juan-Llacer, "Experimental investigation on channel characteristics in tunnel environment for time reversal ultra wide band techniques," Radio Science, Vol. 47, No. 1, 2012.
doi:10.1029/2011RS004893

30. Zhou, C. and J. Waynert, "The equivalence of the ray tracing and modal methods for modeling radio propagation in tunnels," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 615-618, 2013.

31. Zhou, C. and R. Jacksha, "Modeling and measurement of radio propagation in tunnel environments," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 141-144, 2016.

32. Cramer, R., R. Scholtz, M. Z. Win, et al. "Evaluation of an ultra-wide-band propagation channel," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 5, 561-570, 2002.
doi:10.1109/TAP.2002.1011221

33. Rappaport, T. S., Wireless Communications: Principles and Practice, Prentice Hall PTR New Jersey, 1996.

34. Dudley, D., M. Lienard, S. Mahmoud, and P. Degauque, "Wireless propagation in tunnels," IEEE Antennas and Propagation Magazine, Vol. 49, No. 2, 11-26, Apr. 2007.
doi:10.1109/MAP.2007.376637

35. Zhou, C., T. Plass, R. Jacksha, and J. Waynert, "Measurement of RF propagation in mines and tunnels," IEEE Antennas and Propagation Magazine, Vol. 57, No. 4, 88-102, 2014.
doi:10.1109/MAP.2015.2453881

36. Plass, T., R. Jacksha, J. Waynert, and C. Zhou, "Measurement of RF propagation in tunnels," IEEE International Symposium on Antennas and Propagation (APS2013), 1604-1605, Orlando, FL, USA, Jul. 2013.

37. Molisch, A. F., D. Cassioli, C.-C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, H. G. Schantz, K. Siwiak, et al. "A comprehensive standardized model for ultrawideband propagation channels," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3151-3166, 2006.
doi:10.1109/TAP.2006.883983

38. Molina-Garcıa-Pardo, J.-M., M. Lienard, P. Degauque, C. Garcıa-Pardo, and L. Juan-Llacer, "MIMO channel capacity with polarization diversity in arched tunnels," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1186-1189, 2009.
doi:10.1109/LAWP.2009.2035299

39. Sood, N., L. Liang, S. V. Hum, and C. D. Sarris, "Ray-tracing based modeling of ultrawideband pulse propagation in railway tunnels," IEEE International Symposium on Antennas and Propagation (APSURSI), 2383-2386, IEEE, 2011.
doi:10.1109/APS.2011.5997000