Vol. 79
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-10-17
Optimization of Micromachined Millimeter-Wave Planar Silicon Lens Antennas with Concentric and Shifted Matching Regions
By
Progress In Electromagnetics Research C, Vol. 79, 17-29, 2017
Abstract
This paper presents a study of planar silicon lens antennas with up to three steppedimpedance matching regions. The e ective permittivity of the matching regions is tailor-made by etching periodic holes in the silicon substrate. The optimal thickness and permittivity of the matching regions were determined by numerical optimization to obtain the maximum wide-band aperture eciency and smallest side-lobes. We introduce a new geometry for the matching regions, referred to as shifted matching regions. The simulation results indicate that using three shifted matching regions results in twice as large aperture eciency as compared to using three conventional concentric matching regions. By increasing the number of matching regions from one to three, the band-averaged gain is increased by 0.3 dB when using concentric matching regions, and by 3.7 dB when using shifted matching regions, which illustrates the advantage of the proposed shifted matching region design.
Citation
Henrik Frid, Fritzi Topfer, Shreyasi Bhowmik, Sergey Dudorov, and Joachim Oberhammer, "Optimization of Micromachined Millimeter-Wave Planar Silicon Lens Antennas with Concentric and Shifted Matching Regions," Progress In Electromagnetics Research C, Vol. 79, 17-29, 2017.
doi:10.2528/PIERC17082106
References

1. George, J., P. F. M. Smulders, and M. H. A. J. Herben, "Application of fan-beam antennas for 60GHz indoor wireless communication," Electronics Letters, Vol. 37, No. 2, 73-74, Jan. 2001.
doi:10.1049/el:20010059

2. Xue, L. and V. Fusco, "24 GHz automotive radar planar Luneburg lens," IET Microwaves, Antennas & Propagation, Vol. 1, No. 3, 624-628, 2007.
doi:10.1049/iet-map:20050203

3. Tokan, F., N. T. Tokan, A. Neto, and D. Cavallo, "The lateral wave antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 2909-2916, 2014.
doi:10.1109/TAP.2014.2310465

4. Xue, L. and V. Fusco, "Polarisation insensitive planar dielectric slab waveguide extended hemielliptical lens," IET Microwaves, Antennas & Propagation, Vol. 2, No. 4, 312-315, 2008.
doi:10.1049/iet-map:20070194

5. Rolland, A., R. Sauleau, and L. Le Coq, "Flat-shaped dielectric lens antenna for 60-GHz applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 11, 4041-4048, 2011.
doi:10.1109/TAP.2011.2164218

6. Xue, L. and V. Fusco, "Patch fed planar dielectric slab extended hemi-elliptical lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 661-666, 2008.
doi:10.1109/TAP.2008.916974

7. Sato, K. and H. Ujiie, "A plate luneberg lens with the permittivity distribution controlled by hole density," Electronics and Communications in Japan (Part I: Communications), Vol. 85, No. 9, 1-12, 2002.
doi:10.1002/ecja.1120

8. Karttunen, A., J. Saily, A. E. Lamminen, J. Ala-Laurinaho, R. Sauleau, and A. V. Raisanen, "Using optimized eccentricity rexolite lens for electrical beam steering with integrated aperture coupled patch array," Progress In Electromagnetics Research B, Vol. 44, 345-365, 2012.
doi:10.2528/PIERB12082911

9. Filipovic, D. F., S. S. Gearhart, and G. M. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 10, 1738-1749, 1993.
doi:10.1109/22.247919

10. Neto, A., "UWB, non dispersive radiation from the planarly fed leaky lens antenna. Part 1: Theory and design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2238-2247, 2010.
doi:10.1109/TAP.2010.2048879

11. Nguyen, N. T., R. Sauleau, and C. J. M. Perez, "Very broadband extended hemispherical lenses: Role of matching layers for bandwidth enlargement," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 1907-1913, 2009.
doi:10.1109/TAP.2009.2021884

12. Fernandes, C. A., E. B. Lima, and J. R. Costa, "Broadband integrated lens for illuminating reflector antenna with constant aperture efficiency," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 3805-3813, 2010.
doi:10.1109/TAP.2010.2078463

13. Frid, H., "Closed-form relation between the scan angle and feed position for extended hemispherical lenses based on ray tracing," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1963-1966, 2016.
doi:10.1109/LAWP.2016.2545858

14. Topfer, F., S. Dudorov, and J. Oberhammer, "Millimeter-wave near-field probe designed for highresolution skin cancer diagnosis," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 6, 2050-2059, 2015.
doi:10.1109/TMTT.2015.2428243

15. Sterner, M., N. Somjit, U. Shah, S. Dudorov, D. Chicherin, A. R¨ais¨anen, and J. Oberhammer, "Microwave MEMS devices designed for process robustness and operational reliability," International Journal of Microwave and Wireless Technologies, Vol. 3, No. 5, 547-563, 2011.
doi:10.1017/S1759078711000845

16. Dudorov, S., F. Topfer, and J. Oberhammer, "Micromachined-silicon W-band planar-lens antenna with metamaterial free-space matching," 2012 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-3, IEEE, 2012.

17. Mailloux, R. J., Phased Array Antenna Handbook, Vol. 2, Artech House Boston, 2005.

18. Goldsmith, P. F., Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications, IEEE Press New York, 1998.

19. Costa, J. R., C. A. Fernandes, G. Godi, R. Sauleau, L. Le Coq, and H. Legay, "Compact Ka-band lens antennas for leo satellites," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1251-1258, 2008.
doi:10.1109/TAP.2008.922690

20. Silveirinha, M. G. and C. A. Fernandes, "Shaped double-shell dielectric lenses for wireless millimeter wave communications," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1674-1677, IEEE, 2000.

21. Fitzek, F. and R. H. Rasshofer, "Automotive radome design-reflection reduction of stratified media," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1076-1079, 2009.
doi:10.1109/LAWP.2009.2032571

22. Ward, H., W. Puro, and D. Bowie, "Artificial dielectrics utilizing cylindrical and spherical voids," Proceedings of the IRE, Vol. 44, No. 2, 171-174, 1956.
doi:10.1109/JRPROC.1956.274901

23. Somjit, N., G. Stemme, and J. Oberhammer, "Binary-coded 4.25-bit w-band monocrystalline — Silicon mems multistage dielectric-block phase shifters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 11, 2834-2840, 2009.
doi:10.1109/TMTT.2009.2032350

24., CST Microwave Studio, 2016, www.cst.com.

25. Liu, L., S. Matitsine, Y. Gan, and K. Rozanov, "Effective permittivity of planar composites with randomly or periodically distributed conducting fibers," Journal of Applied Physics, Vol. 98, No. 6, 063512, 2005.
doi:10.1063/1.2035895

26. Collin, R. E., Foundations for Microwave Engineering, John Wiley & Sons, 2007.

27. Holter, H., "Dual-polarized broadband array antenna with BOR-elements, mechanical design and measurements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 305-312, 2007.
doi:10.1109/TAP.2006.886557

28. Ludwig, A., "The definition of cross polarization," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 1, 116-119, 1973.
doi:10.1109/TAP.1973.1140406

29. Silver, S., Microwave Antenna Theory and Design, No. 19, IET, 1949.

30. Jain, S., M. Abdel-Mageed, and R. Mittra, "Flat-lens design using field transformation and its comparison with those based on transformation optics and ray optics," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 777-780, 2013.
doi:10.1109/LAWP.2013.2270946

31. Quevedo-Teruel, O., W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, "Transformation optics for antennas: Why limit the bandwidth with metamaterials?," Scientific Reports, Vol. 3, 2013.

32. Mei, Z. L., J. Bai, and T. J. Cui, "Gradient index metamaterials realized by drilling hole arrays," Journal of Physics D: Applied Physics, Vol. 43, No. 5, 055404, 2010.
doi:10.1088/0022-3727/43/5/055404