Vol. 78
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-10-17
Ultra-Broadband Absorption with Gradient Pyramidal Metamaterials
By
Progress In Electromagnetics Research C, Vol. 78, 217-224, 2017
Abstract
We propose a novel absorber by integrating four different-sized pyramidal metamaterials into a unit cell, which leads to a super broadband absorption by properly selecting the geometrical parameters for each pyramid. It is found that in such a design strategy, the high-order modes may be excited and further enhanced by multi-layer overlapping between adjacent unit cells. The as-designed MA, which consists of 13 pairs of alternating metal-dielectric layers with a total thickness of 4.13 mm, shows an absorption of above 90% in the whole frequency range of 7-21.5 GHz. The full width at half maximum is 101.8%, and the ratio of operational bandwidth to thickness achieves 7. The proposed MA is 30% broader and 5.2% thinner than previously reported absorbers working in the same spectral region. Numerical result shows that the proposed absorber is independent of the polarization. The absorption decreases with fluctuations as the incident angle increases but remains quasi-constant up to relatively large angles. Such a design shows great promise for a broad range of applications at microwave frequencies, and the proposed scheme may be extended to the visible, infrared, terahertz spectral regions.
Citation
Yuexia Liu, Wenliang Guo, and Tiancheng Han, "Ultra-Broadband Absorption with Gradient Pyramidal Metamaterials," Progress In Electromagnetics Research C, Vol. 78, 217-224, 2017.
doi:10.2528/PIERC17081107
References

1. Li, W. and J. Valentine, "Metamaterial perfect absorber based hot electron photodetection," Nano Lett., Vol. 14, 3510-3514, 2014.
doi:10.1021/nl501090w

2. Song, Y. M., Y. Xie, V. Malyarchuk, J. L. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, and R. Li, "Digital cameras with designs inspired by the arthropod eye," Nature, Vol. 497, 95-99, 2013.
doi:10.1038/nature12083

3. Yin, X., L. Chen, and X. Li, "Ultra-broadband super light absorber based on multi-sized tapered hyperbolic metamaterial waveguide arrays," J. Lightwave Technol., Vol. 33, 3704-3710, 2015.
doi:10.1109/JLT.2015.2453995

4. Xiao, S., T. Wang, Y. Liu, C. Xu, and X. Yan, "Tunable light trapping and absorption enhancement with graphene ring arrays," Phys. Chem. Chem. Phys., Vol. 18, 26661-26669, 2016.
doi:10.1039/C6CP03731C

5. El-Toukhy, Y. M., M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, "Characterization of asymmetric tapered dipole nanoantenna for energy harvesting applications," Plasmonics, Vol. 12, 1-8, 2017.
doi:10.1007/s11468-016-0221-6

6. El-Toukhy, Y. M., M. F. O. Hameed, M. Hussein, and S. S. A. Obayya, "Tapered plasmonic nanoantennas for energy harvesting applications," Nanoplasmonics — Fundamentals and Applications, 2017, DOI: 10.5772/67418.

7. Ni, X., Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, "An ultrathin invisibility skin cloak for visible light," Science, Vol. 349, 1310-1314, 2015.
doi:10.1126/science.aac9411

8. Chen, Y., P. Han, and X.-C. Zhang, "Tunable broadband antireflection structures for silicon at terahertz frequency," Appl. Phys. Lett., Vol. 94, 041106, 2009.
doi:10.1063/1.3075059

9. Kim, D.-H., D.-S. Kim, S. Hwang, and J.-H. Jang, "Surface relief structures for a flexible broadband terahertz absorber," Opt. Express, Vol. 20, 16815-16822, 2012.
doi:10.1364/OE.20.016815

10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

11. Watts, C. M., X. L. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, OP98-OP120, 2012.

12. El-Aasser, M. A., "Design optimization of nanostrip metamaterial perfect absorbers," J. Nanophotonics, Vol. 8, 11, 2014.
doi:10.1117/1.JNP.8.083085

13. Hedayati, M. K., M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, "Design of a perfect black absorber at visible frequencies using plasmonic metamaterials," Adv. Mater., Vol. 23, 5410, 2011.
doi:10.1002/adma.201102646

14. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Appl. Phys. Lett., Vol. 96, 251104, 2010.
doi:10.1063/1.3442904

15. Peng, X., B. Wang, S. Lai, D. Zhang, and J. Teng, "Ultrathin multi-band planar metamaterial absorber based on standing wave resonances," Opt. Express, Vol. 20, 27756-27765, 2012.
doi:10.1364/OE.20.027756

16. Grant, J., Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Opt. Lett., Vol. 36, 1524-1526, 2011.
doi:10.1364/OL.36.001524

17. Zhu, P. and L. J. Guo, "High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack," Appl. Phys. Lett., Vol. 101, 241116, 2012.
doi:10.1063/1.4771994

18. Cui, Y., K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, "Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab," Nano Lett., Vol. 12, 1443-1447, 2012.
doi:10.1021/nl204118h

19. Azad, A. K., W. J. Kortkamp, M. Sykora, N. R. Weissebernstein, T. S. Luk, and A. J. Taylor, "Metasurface broadband solar absorber," Sci. Rep., Vol. 6, 20347, 2016.
doi:10.1038/srep20347

20. Koechlin, C., P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, "Total routing and absorption of photons in dual color plasmonic antennas," Appl. Phys. Lett., Vol. 99, 241104, 2011.
doi:10.1063/1.3670051

21. Cui, Y., J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, "A thin film broadband absorber based on multi-sized nanoantennas," Appl. Phys. Lett., Vol. 99, 253101, 2011.
doi:10.1063/1.3672002

22. Bouchon, P., C. Koechlin, F. Pardo, R. Ha¨ıdar, and J. L. Pelouard, "Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas," Opt. Lett., Vol. 37, 1038-1040, 2012.
doi:10.1364/OL.37.001038

23. Feng, R., J. Qiu, L. Liu, W. Ding, and L. Chen, "Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling," Opt. Express, Vol. 22, A1713-A1724, 2014.
doi:10.1364/OE.22.0A1713

24. Guo, W., Y. Liu, and T. Han, "Ultra-broadband infrared metasurface absorber," Opt. Express, Vol. 24, 20586-20592, 2016.
doi:10.1364/OE.24.020586

25. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," JOSA B, Vol. 27, 498-504, 2010.
doi:10.1364/JOSAB.27.000498

26. Amin, M., M. Farhat, and H. Bagci, "An ultra-broadband multilayered graphene absorber," Opt. Express, Vol. 21, 29938-29948, 2013.
doi:10.1364/OE.21.029938

27. Zhu, J., Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, "Ultra-broadband terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 105, 021102, 2014.
doi:10.1063/1.4890521

28. Liu, S., H. Chen, and T. J. Cui, "A broadband terahertz absorber using multi-layer stacked bars," Appl. Phys. Lett., Vol. 106, 151601, 2015.
doi:10.1063/1.4918289

29. Peng, Y., X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, "Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a bouble-layered grating structure," Opt. Express, Vol. 23, 2032-2039, 2015.
doi:10.1364/OE.23.002032

30. Li, S., J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, "Wideband, thin and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances," J. Appl. Phys., Vol. 116, 043710, 2014.
doi:10.1063/1.4891716

31. Yang, J. and Z. X. Shen, "A thin and broadband absorber using double-square loops," IEEE Antennas Wireless Propag. Lett., Vol. 6, 388-391, 2007.
doi:10.1109/LAWP.2007.903496

32. Li, M., S. Xiao, Y. Y. Bai, and B. Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas Wireless Propag. Lett., Vol. 11, 748-751, 2012.
doi:10.1109/LAWP.2012.2206361

33. Yoo, Y. J., Y. J. Kim, P. V. Tuong, J. Y. Rhee, K.W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. Lee, "Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances," Opt. Express, Vol. 21, 32484-32490, 2013.
doi:10.1364/OE.21.032484

34. Jiang, T., J. Zhao, and Y. Feng, "Stopping light by an air waveguide with anisotropic metamaterial cladding," Opt. Express, Vol. 17, 170-177, 2009.
doi:10.1364/OE.17.000170

35. Yin, X., C. Long, J. Li, H. Zhu, L. Chen, J. Guan, and X. Li, "Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays," Sci. Rep., Vol. 5, 15367, 2015.
doi:10.1038/srep15367

36. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Appl. Phys. Lett., Vol. 100, 103506, 2012.
doi:10.1063/1.3692178

37. Pang, Y., H. Cheng, Y. Zhou, and J. Wang, "Double-corrugated metamaterial surfaces for broadband microwave absorption," J. Appl. Phys., Vol. 113, 084907, 2013.
doi:10.1063/1.4793631

38. Long, C., S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, "Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode," Sci. Rep., Vol. 6, 21431, 2016.
doi:10.1038/srep21431

39. Tassin, P., T. Koschny, M. Kafesaki, and C. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nature Photon., Vol. 6, 259-264, 2012.
doi:10.1038/nphoton.2012.27