Vol. 79
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-10-22
Linear-to-Circular Polarizers for Multi-Octave Bandwidths and Wide Scan Angles at mm -Wave Frequencies Using Rotated Anisotropic Layers
By
Progress In Electromagnetics Research C, Vol. 79, 49-64, 2017
Abstract
Linear-to-circular polarizers operating from roughly 17 to 65 GHz, and angles of incidence up to 60° are reported. These polarizers convert incident, linearly polarized radiation into circular polarization upon transmission. First, previous designs inspired by the optics community using cascaded waveplates are scaled down to mm-wave frequencies. The naturally occurring anisotropic crystals that the optics community employed are replaced here with metamaterials. The range of incidence angles is improved by utilizing biaxial, artificial dielectrics whose permittivity in the $x$, $y$ and $z$ directions are all engineered. Next, an ultra-wideband linear-to-circular polarizer consisting of cascaded sheet impedances is reported. The cascaded sheet impedance polarizer utilizes a combination of meanderline and metallic patch geometries. The principal axes of each patterned metallic sheet are oriented at an optimized angle, which increases the design degrees of freedom and performance. This polarizer has the advantages of being thinner and easier to fabricate than the polarizer utilizing cascaded waveplates, but is more difficult to design. Both polarizers rely heavily on genetic algorithm optimization in the design process to realize multiple octaves of bandwidths and robust performance at wide angles of incidence. The polarizers are fabricated with commercial printed-circuit-boards, and then experimentally characterized.
Citation
Carl Pfeiffer, and Boris Tomasic, "Linear-to-Circular Polarizers for Multi-Octave Bandwidths and Wide Scan Angles at mm -Wave Frequencies Using Rotated Anisotropic Layers," Progress In Electromagnetics Research C, Vol. 79, 49-64, 2017.
doi:10.2528/PIERC17081101
References

1. Pancharatnam, S., "Achromatic combinations of birefringent plates," Proceedings of the Indian Academy of Sciences, Vol. 41, 137-144, 1955.

2. Masson, J.-B. and G. Gallot, "Terahertz achromatic quarter-wave plate," Optics Lett., Vol. 31, 265-267, 2006.
doi:10.1364/OL.31.000265

3. Pisano, G., G. Savini, P. A. R. Ade, V. Haynes, and W. K. Gear, "Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: Experimental characterization," Applied Optics, Vol. 45, 6982-6989, 2006.
doi:10.1364/AO.45.006982

4. Pfeiffer, C. and A. Grbic, "Millimeter-wave transmitarrays for wavefront and polarization control," IEEE Trans. on Microwave Theory and Techniques, Vol. 61, 4407-4417, 2013.
doi:10.1109/TMTT.2013.2287173

5. Abadi, S. M. A. M. H. and N. Behdad, "Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, 525-534, 2016.
doi:10.1109/TAP.2015.2504999

6. Lin, B., J.-L. Wu, X.-Y. Da, W. Li, and J.-J. Ma, "A linear-to-circular polarization converter based on a second-order band-pass frequency selective surface," Applied Physics A, Vol. 123, 43, 2017.
doi:10.1007/s00339-016-0673-8

7. Li, H.-P., G.-M. Wang, J.-G. Liang, and X.-J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.
doi:10.2528/PIER16012011

8. Young, L., L. Robinson, and C. Hacking, "Meander-line polarizer," IEEE Transactions on Antennas and Propagation, Vol. 21, 376-378, 1973.
doi:10.1109/TAP.1973.1140503

9. Lerner, D., "A wave polarization converter for circular polarization," IEEE Transactions on Antennas and Propagation, Vol. 13, 3-7, 1965.
doi:10.1109/TAP.1965.1138367

10. Chu, R.-S. and K.-M. Lee, "Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence," IEEE Transactions on Antennas and Propagation, Vol. 35, 652-661, 1987.
doi:10.1109/TAP.1987.1144158

11. Zhang, W., J.-Y. Li, and J. Xie, "A broadband circular polarizer based on cross-shaped composite frequency selective surfaces," IEEE Transactions on Antennas and Propagation, 2017, DOI 10.1109/TAP.2017.2735459.

12. Fartookzadeh, M., "Design of metamirrors for linear to circular polarization conversion with superoctave bandwidth," Journal of Modern Optics, Vol. 64, 1854-1861, 2017.
doi:10.1080/09500340.2017.1322155

13. Fartookzadeh, M., "Multi-band metamirrors for linear to circular polarization conversion with wideband and wide-angle performances," Applied Physics B, Vol. 123, 115, 2017.
doi:10.1007/s00340-017-6696-9

14. Yariv, A. and P. Yeh, Optical Waves in Crystals, Wiley, New York, 1984.

15. Balanis, C. A., "Antenna Theory: Analysis and Design," John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.

16. Ludwig, A., "The definition of cross polarization," IEEE Transactions on Antennas and Propagation, Vol. 21, 116-119, 1973.
doi:10.1109/TAP.1973.1140406

17., Thor Labs, https://www.thorlabs.com/.

18. Munk, B. A., Finite Antenna Arrays and FSS, John Wiley & Sons, 2003.
doi:10.1002/0471457531

19. Pfeiffer, C. and A. Grbic, "Emulating nonreciprocity with spatially dispersive metasurfaces excited at oblique incidence," Phys. Rev. Lett., Vol. 117, 077401, 2016.
doi:10.1103/PhysRevLett.117.077401

20. Brakora, K. F., J. Halloran, and K. Sarabandi, "Design of 3-D monolithic MMW antennas using ceramic stereolithography," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 790-797, 2007.
doi:10.1109/TAP.2007.891855

21. Akbari, M., M. Farahani, A.-R. Sebak, and T. Denidni, "Ka-band linear to circular polarization converter based on multilayer slab with broadband performance," IEEE Transactions on Antennas and Propagation, 2017, DOI 10.1109/ACCESS.2017.2746800.

22. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

23. Pfeiffer, C. and A. Grbic, "Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis," Phys. Rev. Applied, Vol. 2, 044011, 2014.
doi:10.1103/PhysRevApplied.2.044011

24. Ericsson, A. and D. Sjoberg, "Design and analysis of a multilayer meander line circular polarization selective structure," IEEE Transactions on Antennas and Propagation, Vol. 65, 4089-4101, 2017.
doi:10.1109/TAP.2017.2710207

25. Goldsmith, P. F., "Quasi-optical techniques," Proceedings of the IEEE, Vol. 80, 1729-1747, 1992.
doi:10.1109/5.175252

26. Ericsson, A., J. Lundgren, and D. Sjoberg, "Experimental characterization of circular polarization selective structures using linearly single-polarized antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, 4239-4249, 2017.
doi:10.1109/TAP.2017.2713812