Vol. 79
Latest Volume
All Volumes
2017-10-22
Linear-to-Circular Polarizers for Multi-Octave Bandwidths and Wide Scan Angles at mm -Wave Frequencies Using Rotated Anisotropic Layers
By
Progress In Electromagnetics Research C, Vol. 79, 49-64, 2017
Abstract
Linear-to-circular polarizers operating from roughly 17 to 65 GHz, and angles of incidence up to 60° are reported. These polarizers convert incident, linearly polarized radiation into circular polarization upon transmission. First, previous designs inspired by the optics community using cascaded waveplates are scaled down to mm-wave frequencies. The naturally occurring anisotropic crystals that the optics community employed are replaced here with metamaterials. The range of incidence angles is improved by utilizing biaxial, artificial dielectrics whose permittivity in the $x$, $y$ and $z$ directions are all engineered. Next, an ultra-wideband linear-to-circular polarizer consisting of cascaded sheet impedances is reported. The cascaded sheet impedance polarizer utilizes a combination of meanderline and metallic patch geometries. The principal axes of each patterned metallic sheet are oriented at an optimized angle, which increases the design degrees of freedom and performance. This polarizer has the advantages of being thinner and easier to fabricate than the polarizer utilizing cascaded waveplates, but is more difficult to design. Both polarizers rely heavily on genetic algorithm optimization in the design process to realize multiple octaves of bandwidths and robust performance at wide angles of incidence. The polarizers are fabricated with commercial printed-circuit-boards, and then experimentally characterized.
Citation
Carl Pfeiffer, and Boris Tomasic, "Linear-to-Circular Polarizers for Multi-Octave Bandwidths and Wide Scan Angles at mm -Wave Frequencies Using Rotated Anisotropic Layers," Progress In Electromagnetics Research C, Vol. 79, 49-64, 2017.
doi:10.2528/PIERC17081101
References

1. Pancharatnam, S., "Achromatic combinations of birefringent plates," Proceedings of the Indian Academy of Sciences, Vol. 41, 137-144, 1955.

2. Masson, J.-B. and G. Gallot, "Terahertz achromatic quarter-wave plate," Optics Lett., Vol. 31, 265-267, 2006.
doi:10.1364/OL.31.000265

3. Pisano, G., G. Savini, P. A. R. Ade, V. Haynes, and W. K. Gear, "Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: Experimental characterization," Applied Optics, Vol. 45, 6982-6989, 2006.
doi:10.1364/AO.45.006982

4. Pfeiffer, C. and A. Grbic, "Millimeter-wave transmitarrays for wavefront and polarization control," IEEE Trans. on Microwave Theory and Techniques, Vol. 61, 4407-4417, 2013.
doi:10.1109/TMTT.2013.2287173

5. Abadi, S. M. A. M. H. and N. Behdad, "Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, 525-534, 2016.
doi:10.1109/TAP.2015.2504999

6. Lin, B., J.-L. Wu, X.-Y. Da, W. Li, and J.-J. Ma, "A linear-to-circular polarization converter based on a second-order band-pass frequency selective surface," Applied Physics A, Vol. 123, 43, 2017.
doi:10.1007/s00339-016-0673-8

7. Li, H.-P., G.-M. Wang, J.-G. Liang, and X.-J. Gao, "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.
doi:10.2528/PIER16012011

8. Young, L., L. Robinson, and C. Hacking, "Meander-line polarizer," IEEE Transactions on Antennas and Propagation, Vol. 21, 376-378, 1973.
doi:10.1109/TAP.1973.1140503

9. Lerner, D., "A wave polarization converter for circular polarization," IEEE Transactions on Antennas and Propagation, Vol. 13, 3-7, 1965.
doi:10.1109/TAP.1965.1138367

10. Chu, R.-S. and K.-M. Lee, "Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence," IEEE Transactions on Antennas and Propagation, Vol. 35, 652-661, 1987.
doi:10.1109/TAP.1987.1144158

11. Zhang, W., J.-Y. Li, and J. Xie, "A broadband circular polarizer based on cross-shaped composite frequency selective surfaces," IEEE Transactions on Antennas and Propagation, 2017, DOI 10.1109/TAP.2017.2735459.

12. Fartookzadeh, M., "Design of metamirrors for linear to circular polarization conversion with superoctave bandwidth," Journal of Modern Optics, Vol. 64, 1854-1861, 2017.
doi:10.1080/09500340.2017.1322155

13. Fartookzadeh, M., "Multi-band metamirrors for linear to circular polarization conversion with wideband and wide-angle performances," Applied Physics B, Vol. 123, 115, 2017.
doi:10.1007/s00340-017-6696-9

14. Yariv, A. and P. Yeh, Optical Waves in Crystals, Wiley, New York, 1984.

15. Balanis, C. A., "Antenna Theory: Analysis and Design," John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.

16. Ludwig, A., "The definition of cross polarization," IEEE Transactions on Antennas and Propagation, Vol. 21, 116-119, 1973.
doi:10.1109/TAP.1973.1140406

17., Thor Labs, https://www.thorlabs.com/.

18. Munk, B. A., Finite Antenna Arrays and FSS, John Wiley & Sons, 2003.
doi:10.1002/0471457531

19. Pfeiffer, C. and A. Grbic, "Emulating nonreciprocity with spatially dispersive metasurfaces excited at oblique incidence," Phys. Rev. Lett., Vol. 117, 077401, 2016.
doi:10.1103/PhysRevLett.117.077401

20. Brakora, K. F., J. Halloran, and K. Sarabandi, "Design of 3-D monolithic MMW antennas using ceramic stereolithography," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 790-797, 2007.
doi:10.1109/TAP.2007.891855

21. Akbari, M., M. Farahani, A.-R. Sebak, and T. Denidni, "Ka-band linear to circular polarization converter based on multilayer slab with broadband performance," IEEE Transactions on Antennas and Propagation, 2017, DOI 10.1109/ACCESS.2017.2746800.

22. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

23. Pfeiffer, C. and A. Grbic, "Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis," Phys. Rev. Applied, Vol. 2, 044011, 2014.
doi:10.1103/PhysRevApplied.2.044011

24. Ericsson, A. and D. Sjoberg, "Design and analysis of a multilayer meander line circular polarization selective structure," IEEE Transactions on Antennas and Propagation, Vol. 65, 4089-4101, 2017.
doi:10.1109/TAP.2017.2710207

25. Goldsmith, P. F., "Quasi-optical techniques," Proceedings of the IEEE, Vol. 80, 1729-1747, 1992.
doi:10.1109/5.175252

26. Ericsson, A., J. Lundgren, and D. Sjoberg, "Experimental characterization of circular polarization selective structures using linearly single-polarized antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, 4239-4249, 2017.
doi:10.1109/TAP.2017.2713812