Vol. 79
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-11-30
Development of Graphene Based Tapered Slot Antennas for Ultra-Wideband Applications
By
Progress In Electromagnetics Research C, Vol. 79, 241-255, 2017
Abstract
In this paper, three different types of graphene based tapered slot antennas are designed for ultrawideband (UWB) applications. The taper profiles for three antenna types are linear, exponential, and constant width. A single layer graphene sheet of 35 μm thickness is used to model the radiating element and feeding structure of the designed antennas. To feed the antennas, microstrip to slotline transition technique is adopted. An approximate analytical theory based on conical transmission line model is considered to authenticate the design of graphene based tapered slot antennas. Better impedance matching over 2-20 GHz is obtained by designing a balun in the form of a radial stub. Return loss, bandwidth, radiation pattern, and directive gain are the considered antenna performance parameters. Time domain solver of CST MWS software is used to evaluate the performances of linearly tapered slot antenna (LTSA), exponentially tapered slot antenna (Vivaldi), and constant width slot antenna (CWSA). The results obtained from CST are compared with that from HFSS to further validate the design. Simulation results with extensive parametric study confirm that the novel 2-D material graphene can be considered as a promising one to model UWB tapered slot antennas. Furthermore, the effectiveness of designed graphene based tapered slot antennas is revealed by comparing their performances with other existing UWB antennas. Moreover, as a UWB application, Vivaldi antenna shows promising results in microwave brain tumor detection.
Citation
Reefat Inum, Md. Masud Rana, and Kamrun Nahar Shushama, "Development of Graphene Based Tapered Slot Antennas for Ultra-Wideband Applications," Progress In Electromagnetics Research C, Vol. 79, 241-255, 2017.
doi:10.2528/PIERC17072611
References

1. The Federal Communications Commission "Revision of Part 15 of the Commision’s rules regarding ultra wideband transmission systems,", First report and order, FCC 02-48, Washington, DC, USA, Apr. 2002.

2. The Federal Communications Commission "Revision of Part 15 of the Commision’s rules regarding ultra wideband transmission systems,", First report and order, FCC 03-33, Washington, DC, USA, Sep. 2007.
doi:10.1109/LAWP.2011.2172181

3. Rahayu, Y., T. A. Rahman, R. Ngah, and P. S. Hall, "Ultra wideband technology and its applications," 5th IFIP International Conference on Wireless and Optical Communications Networks, May 2008.
doi:10.1049/iet-map.2009.0226

4. Azim, R., M. T. Islam, and N. Misran, "Compact tapered-shape slot antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1190-1193, Oct. 2011.
doi:10.2528/PIERC09071510

5. Yao, Y., M. Liu, W. Chen, and Z. Feng, "Analysis and design of wideband widescan planar tapered slot antenna array," IET Microw. Antennas Propag., Vol. 4, No. 10, 1632-1638, 2010.
doi:10.2528/PIERC13012610

6. Jolani, F., G. Dadashzadeh, M. Naser-Moghadasi, and A. Dadgarpour, "Design and optimization of compact balanced antipodal vivaldi antenna," Progress In Electromagnetics Research C, Vol. 9, 183-192, 2009.
doi:10.2528/PIERC17020501

7. Ramesh, S. and T. Rama Rao, "Dielectric loaded exponentially tapered slot antenna for wireless communications at 60GHz," Progress In Electromagnetics Research C, Vol. 38, 43-54, 2013.
doi:10.2528/PIERB13092702

8. Kwame, O. G., G. Wen, Y. Huang, A. E. Ampoma, and W. Hu, "Broadband circularly polarized cross shaped slot antenna with an improved feedline," Progress In Electromagnetics Research C, Vol. 74, 141-149, 2017.

9. Lee, D.-H., H.-Y. Yang, and Y.-K. Cho, "Design and analysis of tapered slot antenna with 3.5/5.5GHz band-Notched characteristics," Progress In Electromagnetic Research B, Vol. 56, 347-363, 2013.
doi:10.1109/LAWP.2016.2572064

10. Cicchetti, R., E. Miozzi, and O. Testa, "Wideband and UWB antennas for wireless applications: A comprehensive review," International Journal of Antennas and Propagation, Vol. 2017, 1-45, Hindawi, Feb. 2017.
doi:10.1186/s40064-015-1659-2

11. Arezoomand, A. S., R. A. Sadeghzadeh, and M. N. Moghadasi, "Novel techniques in tapered slot antenna for linearity phase center and gain enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 270-273, 2017.
doi:10.1109/TAP.2009.2028541

12. Kim, S. W. and D. Y. Choi, "Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna," Springerplus, Vol. 5, No. 1, 1-11, Aug. 2016.
doi:10.1038/nmat1849

13. Low, X. N., Z. N. Chen, and T. S. P. See, "A UWB dipole antenna with enhanced impedance and gain performance," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2959-2966, 2009.

14. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nature Materials, Vol. 6, No. 3, 183-191, Mar. 2007.

15. Seyedsharbaty, M. M. and R. A. Sadeghzadeh, "Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load," Opt. Quant. Electron., Vol. 46, No. 221, 2017.

16. Zarrabi, F. B., et al. "Wide band Yagi antenna for terahertz application with graphene control," Optik — Int. J. Light Electron Optics, 2017, doi: http://dx.doi.org/doi:10.1016/j.ijleo.2017.05.009.

17. Asif, S. M., A. Iftikhar, B. D. Braaten, and M. S. Khan, "Design of an ultra-wideband antenna using flexible graphene-based conductor sheets," IEEE International Symposium on Antennas and Propagation, 1863-1864, 2016.

18. Jiang, Y., R. Yuan, X. Gao, J. Wang, S. Li, and Y. Lin, "An ultra-wideband pattern reconfigurable antenna based on graphene coating," Chin. Phys. B, Vol. 25, No. 11, 1-7, 2016.
doi:10.1016/S1007-0214(09)70001-X

19. Kopyt, P., et al. "Graphene-based dipole antenna for a UHF RFID tag," IEEE Trans. Antennas Propag., 2016, doi: 10.1109/TAP.2016.2565696.

20. Yao, Y., W. Chen, B. Huang, Z. Feng, and Z. Zhang, "Analysis and design of tapered slot antenna for ultra-wideband applications," Tsinghua Science and Technology, Vol. 14, No. 1, 1-6, Feb. 2009.
doi:10.1063/1.2891452

21. Inum, R. M., M. Rana, and K. N. Shushama, "Performance analysis of graphene based nano dipole antenna on stacked substrate," Int. Conf. Electrical, Computer and Telecommunication Engineering, Rajshahi, Mar. 2017, doi: 10.1109/ICECTE.2016.7879574.
doi:10.1109/8.841906

22. Hanson, G. W., "Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, No. 6, Mar. 2008.

23. Stockbroeckx, B. and A. V. Vorst, "Electromagnetic modes in conical transmission lines with application to the linearly tapered slot antenna," IEEE Trans. Antennas Propag., Vol. 48, No. 3, 447-455, Mar. 2000.
doi:10.1109/8.774151

24. Tai, C.-T., Dyadic Green Functions in Electromagnetic Theory, 2nd Ed., IEEE Press, 1994.

25. Shin, J. and D. H. Schaubert, "A parameter study of stripline-fed vivaldi notch-antenna arrays," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 879-886, May 1999.

26. Zhang, H., et al. "A smart antenna array for brain cancer detection," Loughborough Antennas & Propagation Conference, 1-4, Loughborough, UK, Nov. 2011.