1. The Federal Communications Commission "Revision of Part 15 of the Commision’s rules regarding ultra wideband transmission systems,", First report and order, FCC 02-48, Washington, DC, USA, Apr. 2002.
2. The Federal Communications Commission "Revision of Part 15 of the Commision’s rules regarding ultra wideband transmission systems,", First report and order, FCC 03-33, Washington, DC, USA, Sep. 2007.
doi:10.1109/LAWP.2011.2172181
3. Rahayu, Y., T. A. Rahman, R. Ngah, and P. S. Hall, "Ultra wideband technology and its applications," 5th IFIP International Conference on Wireless and Optical Communications Networks, May 2008.
doi:10.1049/iet-map.2009.0226
4. Azim, R., M. T. Islam, and N. Misran, "Compact tapered-shape slot antenna for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1190-1193, Oct. 2011.
doi:10.2528/PIERC09071510
5. Yao, Y., M. Liu, W. Chen, and Z. Feng, "Analysis and design of wideband widescan planar tapered slot antenna array," IET Microw. Antennas Propag., Vol. 4, No. 10, 1632-1638, 2010.
doi:10.2528/PIERC13012610
6. Jolani, F., G. Dadashzadeh, M. Naser-Moghadasi, and A. Dadgarpour, "Design and optimization of compact balanced antipodal vivaldi antenna," Progress In Electromagnetics Research C, Vol. 9, 183-192, 2009.
doi:10.2528/PIERC17020501
7. Ramesh, S. and T. Rama Rao, "Dielectric loaded exponentially tapered slot antenna for wireless communications at 60GHz," Progress In Electromagnetics Research C, Vol. 38, 43-54, 2013.
doi:10.2528/PIERB13092702
8. Kwame, O. G., G. Wen, Y. Huang, A. E. Ampoma, and W. Hu, "Broadband circularly polarized cross shaped slot antenna with an improved feedline," Progress In Electromagnetics Research C, Vol. 74, 141-149, 2017.
9. Lee, D.-H., H.-Y. Yang, and Y.-K. Cho, "Design and analysis of tapered slot antenna with 3.5/5.5GHz band-Notched characteristics," Progress In Electromagnetic Research B, Vol. 56, 347-363, 2013.
doi:10.1109/LAWP.2016.2572064
10. Cicchetti, R., E. Miozzi, and O. Testa, "Wideband and UWB antennas for wireless applications: A comprehensive review," International Journal of Antennas and Propagation, Vol. 2017, 1-45, Hindawi, Feb. 2017.
doi:10.1186/s40064-015-1659-2
11. Arezoomand, A. S., R. A. Sadeghzadeh, and M. N. Moghadasi, "Novel techniques in tapered slot antenna for linearity phase center and gain enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 270-273, 2017.
doi:10.1109/TAP.2009.2028541
12. Kim, S. W. and D. Y. Choi, "Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna," Springerplus, Vol. 5, No. 1, 1-11, Aug. 2016.
doi:10.1038/nmat1849
13. Low, X. N., Z. N. Chen, and T. S. P. See, "A UWB dipole antenna with enhanced impedance and gain performance," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2959-2966, 2009.
14. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nature Materials, Vol. 6, No. 3, 183-191, Mar. 2007.
15. Seyedsharbaty, M. M. and R. A. Sadeghzadeh, "Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load," Opt. Quant. Electron., Vol. 46, No. 221, 2017.
16. Zarrabi, F. B., et al. "Wide band Yagi antenna for terahertz application with graphene control," Optik — Int. J. Light Electron Optics, 2017, doi: http://dx.doi.org/doi:10.1016/j.ijleo.2017.05.009.
17. Asif, S. M., A. Iftikhar, B. D. Braaten, and M. S. Khan, "Design of an ultra-wideband antenna using flexible graphene-based conductor sheets," IEEE International Symposium on Antennas and Propagation, 1863-1864, 2016.
18. Jiang, Y., R. Yuan, X. Gao, J. Wang, S. Li, and Y. Lin, "An ultra-wideband pattern reconfigurable antenna based on graphene coating," Chin. Phys. B, Vol. 25, No. 11, 1-7, 2016.
doi:10.1016/S1007-0214(09)70001-X
19. Kopyt, P., et al. "Graphene-based dipole antenna for a UHF RFID tag," IEEE Trans. Antennas Propag., 2016, doi: 10.1109/TAP.2016.2565696.
20. Yao, Y., W. Chen, B. Huang, Z. Feng, and Z. Zhang, "Analysis and design of tapered slot antenna for ultra-wideband applications," Tsinghua Science and Technology, Vol. 14, No. 1, 1-6, Feb. 2009.
doi:10.1063/1.2891452
21. Inum, R. M., M. Rana, and K. N. Shushama, "Performance analysis of graphene based nano dipole antenna on stacked substrate," Int. Conf. Electrical, Computer and Telecommunication Engineering, Rajshahi, Mar. 2017, doi: 10.1109/ICECTE.2016.7879574.
doi:10.1109/8.841906
22. Hanson, G. W., "Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, No. 6, Mar. 2008.
23. Stockbroeckx, B. and A. V. Vorst, "Electromagnetic modes in conical transmission lines with application to the linearly tapered slot antenna," IEEE Trans. Antennas Propag., Vol. 48, No. 3, 447-455, Mar. 2000.
doi:10.1109/8.774151
24. Tai, C.-T., Dyadic Green Functions in Electromagnetic Theory, 2nd Ed., IEEE Press, 1994.
25. Shin, J. and D. H. Schaubert, "A parameter study of stripline-fed vivaldi notch-antenna arrays," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 879-886, May 1999.
26. Zhang, H., et al. "A smart antenna array for brain cancer detection," Loughborough Antennas & Propagation Conference, 1-4, Loughborough, UK, Nov. 2011.