Vol. 76
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-08-19
A Single Layer S/X-Band Series-Fed Shared Aperture Antenna for SAR Applications
By
Progress In Electromagnetics Research C, Vol. 76, 207-219, 2017
Abstract
This paper presents our research work on designing a dual-band dual-polarized (DBDP) series-fed S/X-band shared aperture antenna (SAA) for synthetic aperture radar (SAR) applications. The proposed SAA DBDP X-band antenna is designed with the concept of series-fed 4-group 2x2 planar arrays with high impedance microstrip line feeding in both vertical and horizontal polarizations. By etching out the inner edge elements from 2x2 X-band subarrays in all the four-groups, the S-band element could be accommodated. The design evolution stages have been presented. The S-band (3.2GHz) is best suited for volumetric soil moisture estimation using SAR and X-band (9.3 GHz) best suited for surveillance SAR applications and grain size estimation. To verify the antenna design concept, a prototype is fabricated and measured with both S-parameters and radiation characteristics including gain measurements. The antenna with reflection coefficient lS11l < -10 dB has an impedance bandwidth 3.12-3.42 GHz (9.3% BW) in S-band and 9.2-9.36 GHz (1.72% BW) in X-band. The measured isolation lS21l between two different bands in the same polarization is better than 25 dB, and the isolation between two different bands in two orthogonal ports is better than 30 dB. Measured gain of the antenna at S-band is better than 8.5 dBi at V-port and H-port, and X-band is better than 11 dBi at either port. Measured side-lobe level (SLL) at S-band is better than -17 dB at either port, and X-band is better than -20 dB at either port. The overall size of the S/X-DBDP SAA is 100 x 100 x 1.6 mm³. Measured results of the S/X-DBDP SAA show good agreement with the finite integration technique (FIT) based computer simulation technology (CST) microwave studio.
Citation
Venkata Kishore Kothapudi, and Vijay Kumar, "A Single Layer S/X-Band Series-Fed Shared Aperture Antenna for SAR Applications," Progress In Electromagnetics Research C, Vol. 76, 207-219, 2017.
doi:10.2528/PIERC17070104
References

1. Jordan, R. L., B. L. Huneycutt, and M. Werner, "The SIR-C/X-SAR synthetic aperture radar system," IEEE Trans. Geosci. Remote Sens., Vol. 33, 829-839, 1995.
doi:10.1109/36.406669

2. Pokuls, R., J. Uher, and D. M. Pozar, "Dual-frequency and dual-polarization microstrip antennas for SAR applications," IEEE Trans. Antennas Propag., Vol. 46, 1289-1296, 1998.
doi:10.1109/8.719972

3. Pozar, D. M. and S. D. Targonski, "A shared-aperture dual-band dual polarized microstrip array," IEEE Trans. Antennas Propag., Vol. 49, 150-157, 2001.
doi:10.1109/8.914255

4. Karmakar, N. C., Md. N. Mollah, S. K. Padhi, and J. S. Fu, "PBG-assisted shared-aperture dualband aperture-coupled patch antenna for satellite communication," Microw. Opt. Technol. Lett., Vol. 16, 289-292, 2005.
doi:10.1002/mop.20968

5. Coman, C. I., I. E. Lager, and L. P. Ligthart, "The design of shared aperture antenna consisting of differently sized elements," IEEE Trans. Antennas Propag., Vol. 54, 376-383, 2006.
doi:10.1109/TAP.2005.863382

6. Zhong, S.-S., Z. Sun, L.-B. Kong, C. Gao, W. Wang, and M.-P. Jin, "Tri-band dual polarization shared-aperture microstrip array for SAR applications," IEEE Trans. Antennas Propag., Vol. 60, 4157-4165, 2012.
doi:10.1109/TAP.2012.2207034

7. Kong, L.-B., S.-S. Zhong, and Z. Sun, "Broadband microstrip element design of a DBDP sharedaperture SAR array," Microw. Opt. Technol. Lett., Vol. 54, 133-136, 2012.
doi:10.1002/mop.26464

8. Zhou, S. G., T. H. Chio, and J. Lu, "A shared-aperture dual-wideband dual-polarized stacked microstrip array," Microw. Opt. Technol. Lett., Vol. 54, 486-491, 2012.
doi:10.1002/mop.26579

9. Sharma, D. K., S. Kulshrestha, S. B. Chakrabarty, and R. Jyoti, "Shared aperture dual band dual polarization microstrip patch antenna," Microw. Opt. Technol. Lett., Vol. 55, 917-922, 2013.
doi:10.1002/mop.27414

10. Zhou, S. G., P. K. Tan, and T. H. Chio, "A wideband, low profile P and Ku-band shared aperture antenna with high isolation and low cross-polarization," IET Microwaves Antennas Propag., Vol. 7, 223-229, 2013.
doi:10.1049/iet-map.2012.0550

11. Sun, Z., K. P. Esselle, S.-S. Zhong, and Y. J. Guo, "Shared-aperture dual-band dual-polarization array using sandwiched stacked patch," Progress In Electromagnetics Research C, Vol. 52, 183-195, 2014.
doi:10.2528/PIERC14052106

12. Zhou, S.-G., J.-J. Yang, and T.-H. Chio, "Design of L/X-band shared aperture antenna array for SAR application," Microw. Opt. Technol. Lett., Vol. 57, 2197-2204, 2015.
doi:10.1364/OL.40.002197

13. Chakrabarti, S., "Development of shared aperture dual configuration antenna for S/Ka-band communication," Microw. Opt. Technol. Lett., Vol. 58, 139-145, 2015.
doi:10.1002/mop.29515

14. Qin, F., S. Gao, Q. Luo, C.-X. Mao, C. Gu, G.Wei, J. Xu, J. Li, C.Wu, K. Zheng, and S. Zheng, "A simple low-cost shared-aperture dual-band dual-polarized high-gain antenna for synthetic aperture radars," IEEE Trans. Antennas Propag., Vol. 64, 2914-2922, 2016.
doi:10.1109/TAP.2016.2559526

15. Kumar, S. S., H. C. Sanandiya, R. Jyoti, A. K. Singhal, D. K. Jangid, and R. C. Gupta, "A shared aperture helical-array antenna set at L and S bands for navigation satellite systems," IEEE Antennas Propag. Mag., Vol. 42, 144-151, 2017.

16. James, J. and P. Hall, Handbook of Microstrip Antennas, Ser. IEEE Electromagnetic Waves Series, Peter Peregrinus Ltd., London, United Kingdom, 1989.

17. Pozar, D. and D. Schaubert, "Comparison of three series fed microstrip array geometries," Proc. IEEE Antennas Propag. Soc. Int. Symp., 728-731, IEEE, 2002.

18., Rogers Corporation, Available at: www.rogerscorp.com.

19., Computer simulation technology version (2016), Wellesley Hills, MA. Available at: www.cst.com.

20. Rocca, P. and A. F. Morabito, "Optimal synthesis of reconfigurable planar arrays with simplified architectures for monopulse radar applications," IEEE Trans. Antennas Propag., Vol. 63, 1048-1058, 2015.
doi:10.1109/TAP.2014.2386359