Vol. 75
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-17
A Scalable Compact Wideband Dual-Polarized Printed Dipole Antenna for Base Station Applications
By
Progress In Electromagnetics Research C, Vol. 75, 203-217, 2017
Abstract
A novel compact wideband dual-polarized printed dipole antenna for base station application is presented. The proposed antenna is composed of four assembled substrates. Two pairs of identical arrow-shaped conductive lines on the tophat substrate form two orthogonal polarized dipoles. Two baluns connected with 50 Ω coaxial cables are integrated on another two vertical substrates to excite the dipoles. The other horizontal board at bottom provides grounding. A rectangular box-shaped reflector is also used to enhance its stability in radiation patterns over the operating frequencies. It achieves 22% size reduction from the conventional printed half-wavelength cross-dipole, and 43.2% impedance bandwidth (VSWR<2), while maintaining a stable radiation pattern with measured Cross-Polarization Degradation (XPD) better than -22dB at boresight and an average peak gain of 8.4 dBi for a 65° Azimuth Beamwidth base station application at 700/800/900 MHz bands. With the scalable miniature structure, it may also find itself suitable for side-by-side multiband Multi-Input Multi-Output (MIMO) or Large-Scale Antenna (LSA) 5G base station applications. A 4x4 array prototype of the LSA is also designed and fabricated, and it achieves 27.8% impedance bandwidth (VSWR<1.5) with well decorrelated element performance and array XPD better than -20 dB across as large as 30° tilting range.
Citation
Chengcheng Tang, Huy Cao, and Jimmy Ho, "A Scalable Compact Wideband Dual-Polarized Printed Dipole Antenna for Base Station Applications," Progress In Electromagnetics Research C, Vol. 75, 203-217, 2017.
doi:10.2528/PIERC17051502
References

1. Lindmark, B. and M. Nillson, "On the available diversity gain from different dual-polarized antennas," IEEE Journal on Selected Areas in Communications, Vol. 19, No. 2, 287-294, Feb. 2001.
doi:10.1109/49.914506

2. Gou, Y., S. Yang, Q. Zhu, and Z. Nie, "A compact dual-polarized double E-shaped patch antenna with high isolation," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4349-4353, Aug. 2013.
doi:10.1109/TAP.2013.2262664

3. Bao, Z., Z. Nie, and X. Zong, "A novel broadband dual-polarization antenna utilizing strong mutual coupling," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 450-454, Jan. 2014.
doi:10.1109/TAP.2013.2287010

4. Cui, Y.-H., R. Li, and H. Fu, "A broadband dual-polarized planar antenna for 2G/3G/LTE base stations," IEEE Trans. Antennas Propaga., Vol. 62, No. 9, 4836-4840, Sep. 2014.
doi:10.1109/TAP.2014.2330596

5. Chu, Q., D. Wen, and Y. Luo, "A broadband ±45◦ dual-polarized antenna with Y-shaped feeding lines," IEEE Trans. Antennas Propaga., Vol. 63, No. 2, 483-490, Feb. 2013.
doi:10.1109/TAP.2014.2381238

6. Li, R., T. Wu, B. Pan, K. Lim, J. Lasker, and M. Tentzeris, "Equivalent circuit analysis of a broadband printed dipole with adjusted integrated balun and an array for base station applications," IEEE Trans. Antennas Propaga., Vol. 57, 2180-2184, Jul. 2009.

7. Zhou, Z., S. Yang, and Z. Nie, "A novel broadband printed dipole antenna with low crosspolarization," IEEE Trans. Antennas Propaga., Vol. 55, 3091-3093, Nov. 2007.

8. He, Q., B. Wang, and J. He, "Wideband and dual-band design of a printed dipole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 7, 1-4, 2008.

9. Liu, Y., H. Yi, F.-W. Wang, and S.-X. Gong, "A novel miniaturized broadband dual-polarized dipole antenna for base station," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1335-1338, 2013.
doi:10.1109/LAWP.2013.2285373

10. Wu, J., Z. Zhao, Z. Nie, and Q. Liu, "A compact printed dipole antenna for wideband wireless applications," Progress In Electromagnetics Research C, Vol. 50, 95-102, 2014.
doi:10.2528/PIERC14040207

11. Gou, Y., S. Yang, J. Li, and Z. Nie, "A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications," IEEE Trans. Antennas Propaga., Vol. 62, No. 8, 4392-4395, Aug. 2014.
doi:10.1109/TAP.2014.2327653

12. Huang, H., Y. Liu, and S. Gong, "A novel dual-broadband, dual-polarized antenna for 2G/3G/LTE base stations," IEEE Trans. Antennas Propaga., Vol. 64, No. 9, 4113-4118, 2016.
doi:10.1109/TAP.2016.2589966

13., HFSS: High Frequency Structure Simulator Based on the Finite Element Method Ansoft Corp..

14. Tang, T. G., Q.M. Tieng, and M.W. Gunn, "Equivalent circuit of a dipole antenna using frequencyindependent lumped elements," IEEE Trans. Antennas Propaga., Vol. 41, No. 1, 100-103, Jan. 1993.
doi:10.1109/8.210122

15. D’Aquino, A., "Recommendation on base station antenna standards by NGMN alliance, N-PBASTA,", Version 10.0, Dec. 2016.

16. Janaswamy, R., "Effects of mutual coupling on the capacity of fixed length linear arrays," IEEE Antennas Wireless Propag. Lett., Vol. 1, 157-160, 2002.
doi:10.1109/LAWP.2002.807570

17. Oh, T., Y.-G. Lim, C.-B. Chae, and Y. Lee, "Dual-polarization slot antenna with high crosspolarization discrimination for indoor smallcell MIMO systems," IEEE Antennas Wireless Propag. Lett., Vol. 14, 374-377, 2015.
doi:10.1109/LAWP.2014.2364517

18. Zheng, W. C., L. Zhang, Q. X. Li, and Y. Leng, "Dual-band dual-polarized compact bowtie antenna array for anti-interference MIMO WLAN," IEEE Trans. Antennas Propag., Vol. 62, No. 1, 237-246, Jan. 2014.
doi:10.1109/TAP.2013.2287287

19. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetic Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

20. Votis, C., G. Tatsis, and P. Kostarakis, "Envelope correlation parameter measurements in a MIMO antenna array configuration," Int. J. Commun., Netw. Syst. Sci., Vol. 2, No. 4, 350-354, 2010.

21. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Transactions on Vehicular Technology, Vol. 36, 149-172, 1987.
doi:10.1109/T-VT.1987.24115

22. Arun, H., A. K. Sarma, M. Kanagasabai, S. Velan, C. Raviteja, and M. G. N. Alsath, "Deployment of modified serpentine structure for mutual coupling reduction in MIMO antennas," IEEE Antennas Wireless Propag. Lett., Vol. 13, 277-280, 2014.
doi:10.1109/LAWP.2014.2304541

23. Alsath, M. G. N., M. Kanagasabai, and B. Balasubramanian, "Implementation of slottedmeanderline resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas Wireless Propag. Lett., Vol. 12, 15-18, 2013.
doi:10.1109/LAWP.2012.2237156

24. Massa, A., M. Donelli, F. De Natale, S. Caorsi, and A. Lommi, "Planar antenna array control with genetic algorithms and adaptive array theory," IEEE Trans. Antennas Propag., Vol. 52, 2919-2924, Nov. 2004.

25. Donelli, M., S. Caorsi, F. De Natale, D. Franceschini, and A. Massa, "A versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1533-1548, Nov. 2004.
doi:10.1163/1569393042954893