Vol. 76
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-26
High Impedance Properties of Two-Dimensional Composite Right/Left-Handed Transmission Lines
By
Progress In Electromagnetics Research C, Vol. 76, 55-62, 2017
Abstract
The electromagnetic characteristics of two-dimensional composite right/left-handed transmission lines (2D CRLH TLs) were investigated for the normal incidence of plane waves. The measured characteristic impedance and reflection phases exhibited resonant high impedance properties (equivalent to zero reflection phase) at a frequency within the left-handed mode for one-dimensional CRLH TL. An equivalent circuit was proposed to explain the measured characteristics. The relationship between the resonant frequency and the circuit parameters for 2D CRLH TLs was clarified by deriving an approximate equation for the resonant frequency. The surface-wave transmission characteristics for the 2D CRLH TLs were compared with those for a mushroom structure.
Citation
Eiichi Sano, and Masayuki Ikebe, "High Impedance Properties of Two-Dimensional Composite Right/Left-Handed Transmission Lines," Progress In Electromagnetics Research C, Vol. 76, 55-62, 2017.
doi:10.2528/PIERC17050902
References

1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Technology, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verificationof a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

5. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Transactions on Microwave Theory and Technology, Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

6. Liu, L., C. Caloz, and T. Itoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Electronics Letters, Vol. 38, No. 23, 1414-1416, 2002.
doi:10.1049/el:20020977

7. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling leveland broad bandwidth," IEEE Transactions on Microwave Theory and Technology, Vol. 52, No. 3, 980-992, 2004.
doi:10.1109/TMTT.2004.823579

8. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, 34-50, Sep. 2004.
doi:10.1109/MMW.2004.1337766

9. Sanada, A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Transactions on Microwave Theory and Technology, Vol. 52, No. 4, 1252-1263, 2004.
doi:10.1109/TMTT.2004.825703

10. Kokkinos, T., C. D. Sarris, and G. V. Eleftheriades, "Periodic finite-difference time-domain analysis of loaded transmission-line negative-refractive-index metamaterials," IEEE Transactions on Microwave Theory and Technology, Vol. 53, No. 4, 1488-1495, 2005.
doi:10.1109/TMTT.2005.845197

11. Sievenpiper, D., L. Zhang, R. F. Jimenez Broas, N. G. Alexopolous, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Technology, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

12. Chandrasekaran, K. T., M. F. Karim, Nasimuddin, and A. Alphones, "CRLH structure-based highimpedance surface for performance enhancement of planar antennas," IET Microwaves, Antennas & Propagation, Vol. 11, No. 6, 818-826, 2017.
doi:10.1049/iet-map.2016.0629

13. Iwamoto, S., A. Sanada, and H. Kubo, "Experimental investigation of reflection characteristics of a high-impedance surface by 2D balanced CRLH metamaterials without a forbidden frequency band," Proceedings of Asia-Pacific Microwave Conference, 1-4, 2007.

14. Rahman, M. and M. A. Stuchly, "Transmission line-periodic circuit representation of planar microwave photonic bandgap structures," Microwave and Optical Technology Letters, Vol. 30, No. 1, 15-19, 2001.
doi:10.1002/mop.1207

15. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd Edition, Artech House, Norwood, MA, 1996.

16., http://www.keysight.com/upload/cmc upload/All/FreeSpaceSeminarRev2.pdf.

17. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135