1. Mankins, J. C., The Case for Space Solar Power, Virginia Edition Publishing, 2014.
2. Myers, D. R., Solar Radiation: Practical Modeling for Renewable Energy Applications, CRC Press, 2013.
3. Luque, A., "Will we exceed 50% effciency in photovoltaics?," Journal of Applied Physics, Vol. 110, No. 3, 2011. [Online], Available: http://scitation.aip.org/content/aip/journal/jap/110/3/10.1063/1.3600702.
doi:10.1063/1.3600702
4. Kotter, D. K., S. D. Novack, W. Slafer, and P. Pinhero, "Theory and manufacturing processes of solar nanoantenna electromagnetic collectors," Journal of Solar Energy Engineering, Vol. 132, No. 1, 011014, 2010.
doi:10.1115/1.4000577
5. Shockley, W. and H. J. Queisser, "Detailed balance limit of efficiency of pn junction solar cells," Journal of Applied Physics, Vol. 32, No. 3, 1961.
doi:10.1063/1.1736034
6. King, R. R., D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, "40 gainpgainasge multijunction solar cells," Applied Physics Letters,, Vol. 90, No. 18, 2007. [Online], Available: http://scitation.aip.org/content/aip/journal/apl/90/18/10.1063/1.2734507.
doi:10.1063/1.2734507
7. Bailey, R. L., "A proposed new concept for a solar-energy converter," Journal of Engineering for Gas Turbines and Power, Vol. 94, No. 2, 73-77, 1972.
doi:10.1115/1.3445660
8. Grover, S. and G. Moddel, "Applicability of Metal/Insulator/Metal (MIM) diodes to solar rectennas," IEEE Journal of Photovoltaics, Vol. 1, No. 1, 78-83, July 2011.
doi:10.1109/JPHOTOV.2011.2160489
9. Dregely, D., R. Taubert, J. Dorfm¨uller, R. Vogelgesang, K. Kern, and H. Giessen, "3d optical yagi-uda nanoantenna array," Nature Communications, Vol. 2, 267, 2011.
doi:10.1038/ncomms1268
10. Novotny, L. and N. Van Hulst, "Antennas for light," Nature Photonics, Vol. 5, No. 2, 83-90, 2011.
doi:10.1038/nphoton.2010.237
11. Kosako, T., Y. Kadoya, and H. F. Hofmann, "Directional control of light by a nano-optical yagi-uda antenna," Nature Photonics, Vol. 4, No. 5, 312-315, 2010.
doi:10.1038/nphoton.2010.34
12. Viti, L., J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, "Black phosphorus terahertz photodetectors," Advanced Materials, Vol. 27, No. 37, 5567-5572, 2015.
doi:10.1002/adma.201502052
13. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, No. 1, 80-87, 2015.
doi:10.1021/acs.nanolett.5b02901
14. Viti, L., J. Hu, D. Coquillat, A. Politano, C. Consejo, W. Knap, and M. S. Vitiello, "Heterostructured hbn-bp-hbn nanodetectors at terahertz frequencies," Advanced Materials, Vol. 28, No. 34, 7390-7396, 2016.
doi:10.1002/adma.201601736
15. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 2016.
16. Mitrofanov, O., L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, L. Sorba, and M. S. Vitiello, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Scientific Reports, Vol. 7, 2017.
17. Sabaawi, A., C. Tsimenidis, and B. Sharif, "Analysis and modeling of infrared solar rectennas,", Vol. 19, No. 3, 9 000 208-9 000 208, May 2013.
18. Gadalla, M., M. Abdel-Rahman, and A. Shamim, "Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification," Scientific Reports, Vol. 4, 2014.
19. Feuillet-Palma, C., Y. Todorov, A. Vasanelli, and C. Sirtori, "Strong near field enhancement in THz nano-antenna arrays," Scientific Reports, Vol. 3, 2013.
20. Ramahi, O., T. Almoneef, M. Alshareef, and M. Boybay, "Metamaterial particles for electromagnetic energy harvesting," Applied Physics Letters, Vol. 101, No. 17, 173 903-173 903, 2012.
doi:10.1063/1.4764054
21. Almoneef, T. S. and O. M. Ramahi, "Metamaterial electromagnetic energy harvester with near unity efficiency," Applied Physics Letters, Vol. 106, No. 15, 153902, 2015.
doi:10.1063/1.4916232
22. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negativeindex plasmonic metamaterial," Phys. Rev. B, Vol. 79, 045131, Jan. 2009. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevB.79.045131.
doi:10.1103/PhysRevB.79.045131
23. Wang, B.-X., L.-L. Wang, G.-Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, "Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber," IEEE Photonics Technology Letters, Vol. 26, No. 2, 111-114, Jan. 2014.
doi:10.1109/LPT.2013.2289299
24. Xiong, X., Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, "Polarizationdependent perfect absorbers/re ectors based on a three-dimensional metamaterial," Phys. Rev. B, Vol. 88, 115105, Sep. 2013. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevB.88.115105.
doi:10.1103/PhysRevB.88.115105
25. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly exible ultrathin metamaterial absorber," Journal of Applied Physics, Vol. 118, No. 8, 083103, 2015. [Online], Available: http://dx.doi.org/10.1063/1.4929449.
doi:10.1063/1.4929449
26. Yahiaoui, R., J. P. Guillet, F. de Miollis, and P. Mounaix, "Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications," Opt. Lett., Vol. 38, No. 23, 4988-4990, Dec. 2013. [Online], Available: http://ol.osa.org/abstract.cfm?FURI=ol-38-23-4988.
doi:10.1364/OL.38.004988
27. Yahiaoui, R., K. Hanai, K. Takano, T. Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, "Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators," Opt. Lett., Vol. 40, No. 13, 3197-3200, Jul. 2015. [Online], Available: http://ol.osa.org/abstract.cfm?URI=ol-40-13-3197.
doi:10.1364/OL.40.003197
28. Liu, X., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403, May 2010. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevLett.104.207403.
doi:10.1103/PhysRevLett.104.207403
29. AlShareef, M. and O. M. Ramahi, "Electrically small resonators for energy harvesting in the infrared regime," Journal of Applied Physics, Vol. 144, 223 101-223 105, 2013.
doi:10.1063/1.4846076
30. Shrekenhamer, D., W.-C. Chen, and W. J. Padilla, "Liquid crystal tunable metamaterial absorber," Phys. Rev. Lett., Vol. 110, 177403, Apr. 2013.
doi:10.1103/PhysRevLett.110.177403
31. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Phys. Rev. Lett., Vol. 99, 063908, Aug. 2007. [Online], Available: http://link.aps.org/doi/10.1103/PhysRevLett.99.063908.
doi:10.1103/PhysRevLett.99.063908
32., CST STUDIO SUITE, “CST Computer Simulation Technology AG,” www.cst.com.
33. Ordal, M., L. Long, R. Bell, S. Bell, R. Bell, R. Alexander, and C. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Applied Optics, Vol. 22, No. 7, 1099-1119, 1983.
doi:10.1364/AO.22.001099