Vol. 74
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-06-02
Novel Compact Harmonic-Rejected Ring Resonator Based Bandpass Filter
By
Progress In Electromagnetics Research C, Vol. 74, 191-201, 2017
Abstract
In this paper, a novel compact ring resonator based bandpass filter with a second harmonic rejection capability is proposed. The proposed bandpass filter uses a stepped-impedance open stubs and a stepped-impedance ring resonator at feeding lines. Stepped-impedance open stubs are used to obtain a better rejection level in the second harmonic-frequency band. Ring resonator's radius is calculated by examining and solving the eigenvalue equation of the ring resonator. Firstly, Sierpinski second order curve is used to achieve size reduction of about 66 % and 71 % compared to conventional microstrip ring bandpass filter inner and outer areas, respectively. Sierpinski curve is chosen because of its symmetry and its suitability for orthogonal feeding lines and open stubs incorporation without using any additional space. Referring to resonant rejection value, the proposed first Sierpinski structure -15 dB simulated fractional bandwidth is 5.6 % at 1.505 GHz and with rejection of -0.16 dB. Transmission zeros at 2.25 GHz and 3.78 GHz are obtained. Secondly, stepped-impedance open stubs are added to the resonator ports to add another transmission zero at 3.84 GHz. At 2.9 GHz, second harmonic band, the proposed structure achieves rejection of - 6.7 dB instead of -1.7 dB for the conventional one. The proposed structure -15 dB simulated fractional bandwidth is 3 % at 1.42 GHz. Innovation is achieved by the simplicity of inserting the transmission zeros, controlling zeros rejection values, incorporating stubs and orthogonal feeding lines in the same resonator area and reasonable power capability of the proposed structure. The proposed bandpass filter's prototype is fabricated using FR4 material, and a good agreement is found between simulated and measured results for return loss and rejection values. The proposed structure is very suitable for L-band applications.
Citation
Tamer Gaber Mohammed Abouelnaga, and Ashraf Shouki Seliem Mohra, "Novel Compact Harmonic-Rejected Ring Resonator Based Bandpass Filter," Progress In Electromagnetics Research C, Vol. 74, 191-201, 2017.
doi:10.2528/PIERC17040205
References

1. Chang, K., Microwave Ring Circuits and Antennas, New York, Wiley, 1996.

2. Kundu, A. C. and I. Awai, "Control of attenuation pole frequency of a dual-mode microstrip ring resonator bandpass filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 6, 1113-1117, 2001.
doi:10.1109/22.925499

3. Wolff, I., "Microstrip bandpass filter using degenerate modes of a microstrip ring resonator," Electronics Letters, Vol. 8, No. 12, 302-303, 1972.
doi:10.1049/el:19720223

4. Chang, K., S. Martin, F. Wang, and J. L. Klein, "On the study of microstrip ring and varactor-tuned ring circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 12, 1288-1295, 1987.
doi:10.1109/TMTT.1987.1133850

5. Hsieh, L. H. and K. Chang, "Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1241-1246, 2003.
doi:10.1109/TMTT.2003.809643

6. Sun, S. and L. Zhu, "Wideband microstrip ring resonator bandpass filters under multiple resonances," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 10, 2176-2182, 2007.
doi:10.1109/TMTT.2007.906510

7. Chiou, Y. C., J. T. Kuo, and J. S. Wu, "Miniaturized dual-mode ring resonator bandpass filter with microstrip-to-CPW broadside-coupled structure," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 2, 97-99, 2008.
doi:10.1109/LMWC.2007.915036

8. Chiou, Y. C., C. Y. Wu, and J. T. Kuo, "New miniaturized dual-mode dual-band ring resonator bandpass filter with microwave C-sections," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 2, 67-69, 2010.
doi:10.1109/LMWC.2009.2038432

9. Lin, T. W., J. T. Kuo, and S. J. Chung, "Miniaturized dual-mode spiral-ring resonator bandpass filter," IEEE Asia-Pacific Microwave Conference Proceedings (APMC), 1127-1129, 2012.

10. Lin, T. W., J. T. Kuo, S. C. Tang, and S. J. Chung, "Miniaturized dual-mode ring resonator bandpass filter with a wide passband," IEEE International Wireless Symposium (IWS), 1-3, 2014.

11. Peh, T. and N. M. Mahyuddin, "Miniaturized broadside-coupled split ring resonator bandpass filter using capacitor loading," IEEE Radio and Antenna Days of the Indian Ocean (RADIO), 1-2, 2016.

12. El-Shaarawy, H. B., F. Coccetti, R. Plana, M. El Said, and E. A. Hashish, "Compact bandpass ring resonator filter with enhanced wide-band rejection characteristics using defected ground structures," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 8, 500-502, 2008.
doi:10.1109/LMWC.2008.2000998

13. Griol, A., D. Mira, A. Martinez, J. Marti, and J. L. Corral, "Microstrip multistage coupled ring bandpass filters using photonic bandgap structures for harmonic suppression," Electronics Letters, Vol. 39, No. 1, 68-70, 2003.
doi:10.1049/el:20030022

14. Wahab, N. A., M. K. M. Salleh, Z. I. Khan, N. E. A. Rashid, and K. A. Othman, "Single mode ring resonator with harmonic suppression," IEEE International Symposium on Communications and Information Technologies (ISCIT), 294-298, 2014.

15. Dhanasekaran, D., "Harmonic suppression of bandpass filter using square CSRR," IEEE International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 1-3, 2015.

16. Lin, T. W., J. T. Kuo, and S. J. Chung, "Bandpass filter with generalized multiple-mode ring resonator configuration," IEEE International Microwave Symposium Digest (MTT), 1-3, 2012.

17. Kuo, J. T. and T. W. Lin, "Dual-mode Dual-Band Ring Resonator Bandpass Filter with Transmission Zeros," IEEE Asia-Pacific Microwave Conference Proceedings (APMC), 1865-1870, 2010.

18. Luo, S., L. Zhu, and S. Sun, "A Dual-Band Ring-Resonator Bandpass Filter Based on Two Pairs of Degenerate Modes," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 12, 3427-3432, 2010.

19. Ma, Z., H. Sasaki, C. P. Chen, T. Anada, and Y. Kobayashi, "Design of a wideband bandpass filter using microstrip parallel-coupled dual-mode ring resonator," IEEE Asia-Pacific Microwave Conference Proceedings (APMC), 21-24, 2010.

20. Kawai, K., H. Okazaki, and S. Narahashi, "Ring resonators for bandwidth and center frequency tunable filter," IEEE European Microwave Conference, 298-301, 2007.

21. Kawai, K., H. Okazaki, and S. Narahashi, "Center frequency, bandwidth, and transfer function tunable bandpass filter using ring resonator and J-inverter," IEEE Microwave Conference EuMC, 1207-1210, 2009.

22. Tu, W. H. and K. Chang, "Compact microstrip band stop filter using open stub and spur line," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 4, 268-270, 2005.
doi:10.1109/LMWC.2005.845739

23. Salleh, M. K. M., G. Prigent, O. Pigaglio, and R. Crampagne, "Quarter-wavelength side-coupled ring resonator for bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 1, 156-162, 2008.
doi:10.1109/TMTT.2007.912167

24. Murakami, K. and S. Kitazawa, "Transient responses of voltage and current on ring resonator and traveling-wave loop directional filters," IEEE Microwave Conference Proceedings (APMC), 2010 Asia-Pacific, 1185-1188, 2010.

25. Sun, S. and L. Zhu, "Wideband microstrip ring resonator bandpass filter with asymmetrically-loaded stubs," IEEE Asia-Pacific Microwave Conference, 1-4, 2008.

26. Kim, C. H. and K. Chang, "Ultra-wideband (UWB) ring resonator bandpass filter with a notched band," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 4, 206-208, 2011.
doi:10.1109/LMWC.2011.2109942

27. Kim, C. H. and K. Chang, "Wideband ring resonator bandpass filter with dual stepped impedance stubs," IEEE International Microwave Symposium Digest (MTT), 229-232, 2010.

28. Meng, L., J. Xu, and M. Gao, "A novel Ultra-Wideband (UWB) ring resonator bandpass filter with improved in-band and out-of-band performance," International Conference on Electronics, Communications and Control (ICECC), 4108-4110, 2011.
doi:10.1109/ICECC.2011.6066773

29. Wolff, I. and N. Knoppik, "Microstrip ring resonator and dispersion measurement on microstrip lines," Electronics Letters, Vol. 7, No. 26, 779-781, 1971.
doi:10.1049/el:19710532

30. Garg, R., I. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, 3rd Ed., Artech House, USA, 2013.

31. Jarry, P. and J. Beneat, Design and Realizations of Miniaturized Fractal Microwave and RF Filters, John Wiley and Sons, 2009.

32. Hu, R., J. Li, and S. Fan, "A novel fractal folded-slot antenna using Sierpinski curves," IEEE Singapore International Conference on Communication Systems (ICCS), 371-373, 2008.