1. Boller, K. J., A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett., Vol. 66, 2593, 1991.
doi:10.1103/PhysRevLett.66.2593
2. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys., Vol. 77, 633-673, 2005.
doi:10.1103/RevModPhys.77.633
3. Xu, Q., S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett., Vol. 96, 123901, 2006.
doi:10.1103/PhysRevLett.96.123901
4. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, Phys. Rev. Lett., Vol. 101, 253903, 2008.
doi:10.1103/PhysRevLett.101.253903
5. Zhang, S., D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Phys. Rev. Lett., Vol. 101, No. 4, 047401, 2008.
doi:10.1103/PhysRevLett.101.047401
6. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, No. 4, 1103-1107, 2010.
doi:10.1021/nl902621d
7. Smith, D. D., H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, "Coupled resonator induced transparency," Phys. Rev. A, Vol. 69, No. 6, 063804, 2004.
doi:10.1103/PhysRevA.69.063804
8. Xu, Q., S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett., Vol. 96, No. 12, 123901, 2006.
doi:10.1103/PhysRevLett.96.123901
9. Kekatpure, R. D., E. S. Barnard, W. Cai, and M. L. Brongersma, "Phase-coupled plasmon induced transparency," Phys. Rev. Lett., Vol. 104, No. 24, 243902, 2010.
doi:10.1103/PhysRevLett.104.243902
10. Wang, G., H. Lu, and X. Liu, "Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency," Opt. Express, Vol. 20, 20902, 2012.
doi:10.1364/OE.20.020902
11. Lu, H., X. Liu, and D. Mao, "Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems," Phys. Rev. A, Vol. 85, 053803, 2012.
doi:10.1103/PhysRevA.85.053803
12. Yahiaoui, R., K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, "Terahertz meta-molecules deposited on thin flexible polymer: Design, fabrication and experimental characterization," J. Opt., Vol. 16, 094014, 2014.
doi:10.1088/2040-8978/16/9/094014
13. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," J. Appl. Phys., Vol. 118, 083103, 2015.
doi:10.1063/1.4929449
14. Yahiaoui, R., A. C. Strikwerda, and P. U. Jepsen, "Terahertz plasmonic structure with enhanced sensing capabilities," IEEE Sensors Journal, Vol. 16, 2484, 2016.
doi:10.1109/JSEN.2016.2521708
15. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937
16. He, X., Q. Wang, and S. F. Yu, "Investigation of multilayer subwavelength metallic-dielectric stratified structures," IEEE J. Quantum Elect., Vol. 48, 1554, 2012.
doi:10.1109/JQE.2012.2219504
17. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937
18. He, S., X. Zhang, and Y. He, "Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI," Opt. Express, Vol. 21, 30664-30673, 2013.
doi:10.1364/OE.21.030664
19. Nikitin, A. Y., F. Guinea, F. J. Garcıa-Vidal, and L. Martın-Moreno, "Edge and waveguide terahertz surface plasmon modes in graphene microribbons," Phys. Rev. B, Vol. 84, 161407, 2011.
doi:10.1103/PhysRevB.84.161407
20. Zhu, X., W. Yan, N. A. Mortensen, and S. Xiao, "Bends and splitters in graphene nanoribbon waveguides," Opt. Express, Vol. 21, 3486-3491, 2013.
doi:10.1364/OE.21.003486
21. Shi, X., D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, "Plasmonic analog of electromagnetically induced transparency in nanostructure graphene," Opt. Express, Vol. 21, No. 23, 28438, 2013.
doi:10.1364/OE.21.028438
22. Shi, X., X. Su, and Y. Yang, "Enhanced tunability of plasmon induced transparency in graphene strips," J. Appl. Phys., Vol. 117, 143101, 2015.
doi:10.1063/1.4916748
23. Lin, Q., X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, "Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings," EPL, Vol. 111, 340004, 2015.
24. Wang, L., W. Li, and X. Jiang, "Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide," Opt. Lett., Vol. 40, No. 10, 2325-2328, 2015.
doi:10.1364/OL.40.002325
25. Fu, G., X. Zhai, H. J. Li, S. X. Xia, and L. L. Wang, "Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips," Plasmonics, 2016, doi:10.1007/s11468-016-0215-4 (2016).
26. Wang, B., X. Zhang, X. Yuan, and J. Teng, "Optical coupling of surface plasmons between graphene sheets," Appl. Phys. Lett., Vol. 100, 131111, 2012.
doi:10.1063/1.3698133
27. Gan, C. H., H. S. Chu, and E. P. Li, "Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies," Phys. Rev. B, Vol. 85, 125431, 2012.
doi:10.1103/PhysRevB.85.125431
28. Zhuang, H., F. Kong, K. Li, and S. Sheng, "Plasmonic bandpass filter based on graphene nanoribbon," Appl. Opt., Vol. 54, 2558-2564, 2015.
doi:10.1364/AO.54.002558
29. Han, Z. H. and S. I. Bozhevolnyi, "Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices," Opt. Express, Vol. 19, 3251-3257, 2011.
doi:10.1364/OE.19.003251