Vol. 75
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-06-12
A Flexible Planar Antenna on Multilayer Rubber Composite for Wearable Devices
By
Progress In Electromagnetics Research C, Vol. 75, 31-42, 2017
Abstract
This paper presents the design of a flexible antenna using planar dipole with a reflector to achieve optimal radiation efficiency and low specific absorption rate (SAR) when the antenna is placed directly over the skin of body model. The antenna is designed for the 2.45 GHz frequency band. The parametric analysis of the proposed antenna is carried out. The proposed antenna achieves stable on-body performance: |S11| varies from -16.05 dB (on skin) at 2.47 GHz resonant frequency to -16.40 dB (on skin) at 2.47 GHz resonant frequency to -16.40 dB (in free space) at 2.44 GHz resonant frequency. It was found that the maximum 1 g average SAR value is only 0.23 W/kg for an input power of 100 mW when the antenna is placed directly over the skin of a three-layer body model, and radiation efficiency is 20.5%. The measured results are presented to demonstrate the validity of the proposed antenna.
Citation
Abdullah Al-Sehemi, Ahmed Al-Ghamdi, Nikolay Dishovsky, Gabriela Atanasova, and Nikolay Atanasov, "A Flexible Planar Antenna on Multilayer Rubber Composite for Wearable Devices," Progress In Electromagnetics Research C, Vol. 75, 31-42, 2017.
doi:10.2528/PIERC17031701
References

1. Chen, J. W. and H. Mitomo, "The underlying factors of the perceived usefulness of using smart wearable devices for disaster applications," Telematics and Informatics, Vol. 34, 528-539, 2017.
doi:10.1016/j.tele.2016.09.010

2. Yang, H., W. Yao, Y. Yi, X. Huang, S. Wu, and B. Xiao, "A dual-band low-profile metasurfaceeanabled wearable antenna for WLAN devices," Progress In Electromagnetic Research, Vol. 61, 115-125, 2016.
doi:10.2528/PIERC15092803

3. Genovesi, S., F. Costa, F. Fanciulli, and A. Monorchio, "Wearable inkjet-printed wideband antenna by using miniaturized AMC for sub-GHz applications," IEEE Antennas and Wirelesss Propagation Letter, Vol. 15, 4027-4030, 2016.

4. Al-Ghamdi, A., O. Al-Hartomy, F. Al-Solamy, N. Dishovsky, N. Atanasov, and G. Atanasova, "Enhancing antenna performance and SAR reduction by a conductive composite loaded with carbon-silica hybrid filler," International Journal of Electronics and Communications (AEU), Vol. 70, 668-675, 2017.

5. Jiang, Z., D. Brocker, P. Sieber, and D. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices," IEEE Trans. Antennas Propag., Vol. 62, 4021-4030, 2014.
doi:10.1109/TAP.2014.2327650

6. Velan, S., E. Florence, M. Kanagasabai, A. Sarma, C. Reviteja, R. Sivasamy, and J. Pakkathillam, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," Antennas Wireless Propag. Lett., Vol. 14, 249-252, 2015.
doi:10.1109/LAWP.2014.2360710

7. Raad, H., A. Abbosh, H. Al-Rizzo, and D. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," Antennas Wireless Propag. Lett., Vol. 61, 524-531, 2013.
doi:10.1109/TAP.2012.2223449

8. Chen, Y. and T. Ku, "A low-profile wearable antenna using a miniature high impedance surface for smart watch applications," Antennas Wireless Propag. Lett., Vol. 15, 1144-1147, 2016.
doi:10.1109/LAWP.2015.2496366

9. Abbas, S. M., K. Esselle, and Y. Ranga, "A printed antenna with a ground plane and electromagnetically coupled feed for 2.45GHz body area networks," APSURSI, IEEE, 2143-2144, 2013.

10. Affendi, N. A. M., N. A. L. Alias, N. M. Razali, Z. Awang, and A. Samsuri, "Flexible antennas using a new material," Proceedings of Asia-Pacific Microwave Conference, 1420-1422, 2014.

11. Zaiki, A., N. A. M. Affendi, N. A. L. Alias, and N. M. Razali, "Flexible antennas based on natural rubber," Progress In Electromagnetic Research, Vol. 61, 75-90, 2016.
doi:10.2528/PIERC15092501

12. Chen, L. F., C. K. Ong, C. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, 1st Ed., John Wiley & Sons, Ltd., Chichester, 2004.
doi:10.1002/0470020466

13. Raad, H. K., H. M. Al-Rizzo, A. Issac, and A. I. Hammoodi, "A compact dual band polyimide based antenna for wearable and flexible telemedicine devices," Progress In Electromagnetics Research C, Vol. 63, 153-161, 2016.
doi:10.2528/PIERC16010707

14. Hu, B., G.-Gao, L.-L. He, X.-D. Cong, and J.-N. Zhao, "Bending and on-arm effects on a wearable antenna for 2.45GHz body area network," IEEE Antennas Wireless Propag. Lett., Vol. 15, 378-381, 2015.
doi:10.1109/LAWP.2015.2446512

15., https://www.fcc.gov/general/body-tissue-dielectric-parameters.

16. Fujimoto, K., "Antennas for mobile communications," Modern Antenna Handbook, 1143-1228, C. A. Balanis editor, Hoboken, John Wiley & Sons, Inc., 2008.

17. Yialmaz, T., R. Foster, and Y. Hao, "Broadband tissue mimicking phantoms and a patch resonator for evaluation noninvasive monitoring of blood glucose levels," IEEE Trans. Antennas Propag., Vol. 62, 3065-3075, 2014.

18., IEEE for Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, IEEE Standard 1528, 2003.

19. Varnoosfaderani, M. V., D. V. Thiel, and J. Lu, "External parasitic elements on clothing for improved performance of wearable antennas," IEEE Sensors Journal, Vol. 15, No. 1, 307-315, 2015.
doi:10.1109/JSEN.2014.2343245