Vol. 73
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-04-29
Dynamic Selection of Relay Node Based on Channel Fading Coefficient for Reentry Hypersonic Vehicles
By
Progress In Electromagnetics Research C, Vol. 73, 177-185, 2017
Abstract
The development of near-space hypersonic vehicles is confronted with the ``blackout'' problem of the plasma sheath. As electronic density on the leeward surface is lower than that on the windward surface during the reentry process, a low Earth orbit (LEO) satellite may be used to mitigate this problem. In this study, the Iridium system, as a low-orbit relay satellite system, is utilized to evaluate the feasibility of using a LEO satellite. First, the incident angle of the electromagnetic waves radiating from the vehicles to various potential relay satellites is calculated by the STK software. Second, the transmission coefficient of the electromagnetic wave in the plasma is obtained by using the equivalent wave impedance method to present the attenuation effect of the plasma sheath channel. Finally, the attenuation coefficients of each channel between the aircraft and the potential satellite are used as a parameter to select the best relay in the reentry process of the vehicles. Simulation results show that the use of LEO satellites for relay can significantly reduce the communication interruption time during the reentry process by 32.6% for typical scenarios.
Citation
Lei Shi, Jinxin Wei, Xiaoping Li, Bo Yao, and Bowen Bai, "Dynamic Selection of Relay Node Based on Channel Fading Coefficient for Reentry Hypersonic Vehicles," Progress In Electromagnetics Research C, Vol. 73, 177-185, 2017.
doi:10.2528/PIERC17021003
References

1. Starkey, R. P., "Hypersonic vehicle telemetry blackout analysis," Journal of Spacecraft and Rockets, Vol. 52, No. 2, 426-438, 2015.
doi:10.2514/1.A32051

2. Sahadeo, R., et al., "Blackout analysis of small reentry vehicles," 53rd AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, 2015.

3. Gillman, E. D., J. E. Foster, and I. M. Blankson, "Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation," NASA/TM-2010-216220, E-17194 No. 20100008938, 1-25, 2010.

4. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace and Electronic Systems, Vol. 7, No. 5, 879-894, 1971.
doi:10.1109/TAES.1971.310328

5. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetic Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201

6. Charles, H. J., Recommendations from the workshop on communications through plasma during hypersonic flight, U.S. Air Force T&E Days 2009, AIAA2009-1718, 5, 2009.

7. Lemmer, K. M., "Experimental results for communications blackout amelioration using crossed electric and magnetic fields," Journal of Spacecraft and Rockets, Vol. 46, No. 6, 10, 2009.
doi:10.2514/1.45490

8. He, G., Y. Zhan, and N. Ge, "Adaptive transmission method for alleviating the radio blackout problem," Progress In Electromagnetics Research, Vol. 152, 127-136, 2015.
doi:10.2528/PIER15072702

9. Liu, Z., et al., "Effects of pressure variation on polarization properties of obliquely incident RF waves in re-entry plasma sheath," IEEE Transactions on Plasma Science, Vol. 43, No. 9, 3147-3154, 2015.
doi:10.1109/TPS.2015.2461546

10. Liu, Z., et al., "Influence of plasma pressure fluctuation on RF wave propagation," Plasma Science and Technology, Vol. 18, No. 2, 131-137, 2016.
doi:10.1088/1009-0630/18/2/06

11. Shi, L., L. Zhao, B. Yao, and X. Li, "Telemetry channel capacity assessment for reentry vehicles in plasma sheath environment," Plasma Sci. Technol., Vol. 17, No. 12, 1006-1012, 2015.
doi:10.1088/1009-0630/17/12/05

12. Shi, L., et al., "Adaptive multistate markov channel modeling method for reentry dynamic plasma sheaths," IEEE Transactions on Plasma Science, Vol. 44, No. 7, 1083-1093, 2016.
doi:10.1109/TPS.2016.2575082

13. Xie, K., et al., "Re-entry communication through a plasma sheath using standing wave detection and adaptive data rate control," Journal of Applied Physics, Vol. 119, No. 2, 1-103, 2016.

14. Yang, M., et al., "Propagation of phase modulation signals in time-varying plasma," AIP Advances, Vol. 6, No. 5, 055110, 2016.
doi:10.1063/1.4950694

15. Yang, M., X. Li, K. Xie, and Y. Liu, "Parasitic modulation of electromagnetic signals caused by time-varying plasma," Physics of Plasmas, Vol. 22, No. 2, 022120, 2015.
doi:10.1063/1.4907904

16. Min, Y., et al., "A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma," Physics of Plasmas, Vol. 20, No. 1, 012101, 2013.
doi:10.1063/1.4773906

17. Luo, J. and R. S. Blum, New Approaches for Cooperative Use of Multiple Antennas in AdHoc Wireless Networks, IEEE, 2004.

18. Su, W. and X. Liu, "On optimum selection relaying protocols in cooperative wireless networks," IEEE Transactions on Communications, Vol. 58, No. 1, 52-57, 2010.
doi:10.1109/TCOMM.2010.01.060691

19. Gao, X. and B. Jiang, "A matching approach to communicate through the plasma sheath surrounding a hypersonic vehicle," Journal of Applied Physics, Vol. 117, No. 23, 233301, 2015.
doi:10.1063/1.4921751

20. He, G., et al., "Measuring the time-varying channel characteristics of the plasma sheath from the reflected signal," IEEE Transactions on Plasma Science, Vol. 42, No. 12, 3975-3981, 2014.
doi:10.1109/TPS.2014.2363840

21. Bai, B., et al., "Effects of reentry plasma sheath on the polarization properties of obliquely incident EM waves," IEEE Transactions on Plasma Science, Vol. 42, No. 10, 3365-3372, 2014.
doi:10.1109/TPS.2014.2349009

22. Shi, L., B. W. Bai, Y. M. Liu, and X. P. Li, "Navigation antenna performance degradation caused by plasma sheath," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 4, 518-528, 2013.
doi:10.1080/09205071.2013.755110

23. Bai, B., X. Li, J. Xu, and Y. Liu, "Reflections of electromagnetic waves obliquely incident on a multilayer stealth structure with plasma and radar absorbing material," IEEE Transactions on Plasma Science, Vol. 43, No. 8, 2588-2597, 2015.
doi:10.1109/TPS.2015.2447536