Vol. 79
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-11-05
High Gain Slotted Waveguide Antenna Based on Beam Focusing Using Electrically Split Ring Resonator Metasurface Employing Negative Refractive Index Medium
By
Progress In Electromagnetics Research C, Vol. 79, 115-126, 2017
Abstract
In this paper, a new high performance slotted waveguide antenna incorporated with negative refractive index metamaterial structure is proposed, designed and experimentally demonstrated. The metamaterial structure is constructed from a multilayer two-directional structure of electrically split ring resonator which exhibits negative refractive index in direction of the radiated wave propagation when it is placed in front of the slotted waveguide antenna. As a result, the radiation beams of the slotted waveguide antenna are focused in both E and H planes, and hence the directivity and the gain are improved, while the beam area is reduced. The proposed antenna and the metamaterial structure operating at 10 GHz are designed, optimized and numerically simulated by using CST software. The effective parameters of the eSRR structure are extracted by Nicolson Ross Weir (NRW) algorithm from the s-parameters. For experimental verification, a proposed antenna operating at 10 GHz is fabricated using both wet etching microwave integrated circuit technique (for the metamaterial structure) and milling technique (for the slotted waveguide antenna). The measurements are carried out in an anechoic chamber. The measured results show that the E plane gain of the proposed slotted waveguide antenna is improved from 6.5 dB to 11 dB as compared to a conventional slotted waveguide antenna. Also, the E plane beamwidth is reduced from 94.1 degrees to about 50 degrees. The antenna return loss and bandwidth are slightly changed. Furthermore, the proposed antenna offers easier fabrication processes with a high gain than the horn antenna, particularly if the proposed antenna is scaled down in dimensionality to work in the THz regime.
Citation
Adel A. A. Abdelrehim, and Hooshang Ghafouri-Shiraz, "High Gain Slotted Waveguide Antenna Based on Beam Focusing Using Electrically Split Ring Resonator Metasurface Employing Negative Refractive Index Medium," Progress In Electromagnetics Research C, Vol. 79, 115-126, 2017.
doi:10.2528/PIERC17020705
References

1. Kang, M., N. H. Shen, J. Chen, J. Chen, Y. X. Fan, J. Ding, and P. Wu, "A new planar left-handed metamaterial composed of metal-dielectric-metal structure," Optics Express, Vol. 16, No. 12, 8617-8622, 2008.
doi:10.1364/OE.16.008617

2. Luk’yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials,", Vol. 9, No. 9, 707-715, 2010.

3. Omelyanovich, M., V. Ovchinnikov, and C. Simovski, "A non-resonant dielectric metamaterial for the enhancement of thin-film solar cells," Journal of Optics, Vol. 17, No. 2, 025102, 2015.
doi:10.1088/2040-8978/17/2/025102

4. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Zharov, A. A., N. A. Zharova, R. E. Noskov, I. V. Shadrivov, and Y. S. Kivshar, "Birefringent left-handed metamaterials and perfect lenses for vectorial fields," New Journal of Physics, Vol. 7, No. 1, 220, 2005.
doi:10.1088/1367-2630/7/1/220

6. Grbic, A. and G. V. Eleftheriades, "A backward-wave antenna based on negative refractive index LC networks," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 340-343, 2002.
doi:10.1109/APS.2002.1016992

7. Grbic, A. and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," Journal of Applied Physics, Vol. 92, No. 10, 5930-5935, 2002.
doi:10.1063/1.1513194

8. Chen, X., H. F. Ma, X. M. Yang, Q. Cheng, W. X. Jiang, and T. J. Cui, "X-band high directivity lens antenna realized by gradient index metamaterials," Proc. Asia Pac. Microw. Conf. (APMC), Vol. 1–5, 793-797, 2009.

9. Yuan, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, "A dual-resonant terahertz metamaterial based on single-particle electric-fieldcoupled resonators," Appl. Phys. Lett., Vol. 93, No. 19, 191110, 2008.
doi:10.1063/1.3026171

10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

11. Chin, J. Y., J. N. Gollub, J. J. Mock, R. P. Liu, C. Harrison, D. R. Smith, and T. J. Cui, "An efficient broadband metamaterial wave retarder," Opt. Express, Vol. 17, No. 9, 7640-7647, 2009.
doi:10.1364/OE.17.007640

12. Chen, X., H. F. Ma, X. M. Yang, Q. Cheng, W. X. Jiang, and T. J. Cui, "X-band high directivity lens antenna realized by gradient index metamaterials," Proc. Asia Pac. Microw. Conf. (APMC), Vol. 1–5, 793-797, 2009.

13. Xiao, Z. G. and H. L. Xu, "Low refractiveMTMs for gain enhancement of horn antenna," J. Infrared Millimeter Terahertz Waves, Vol. 30, No. 3, 225-232, 2009.
doi:10.1007/s10762-008-9449-3

14. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Efficient, high gain with low side lobe level antenna structures using parasitic patches on multilayer superstrate," Microwave and Optical Technology Letters, Vol. 54, No. 6, 1488-1493, 2012.
doi:10.1002/mop.26818

15. Choi, W., Y. H. Cho, C. S. Pyo, and J. I. Choi, "A high-gain microstrip patch array antenna using a superstrate layer," ETRI Journal, Vol. 25, No. 5, 407-411, 2003.
doi:10.4218/etrij.03.0102.0002

16. Parabolic Reflector Antennas, U.S. Patent 3,572,071, issued March 23, 1971.

17. Pendry, J., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 4166-4169, 2000.
doi:10.1103/PhysRevLett.85.3966

18. Islam, M. M., M. T. Islam, M. Samsuzzaman, M. R. I. Faruque, N. Misran, and M. F. Mansor, "A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications," Materials, Vol. 8, No. 2, 392-407, 2015.
doi:10.3390/ma8020392

19. Alibakhshi-Kenari, M. and M. Naser-Moghadasi, "Novel UWB miniaturized integrated antenna based on CRLH metamaterial transmission lines," AEU-International Journal of Electronics and Communications, Vol. 69, No. 8, 1143-1149, 2015.
doi:10.1016/j.aeue.2015.04.017

20. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902

21. Xu, H., Z. Zhao, Y. Lv, C. Du, and X. Luo, "Metamaterial superstrate and electromagnetic bandgap substrate for high directive antenna," Int. J. Infrared Milli Waves, Vol. 29, 493-498, 2008.
doi:10.1007/s10762-008-9344-y

22. Ju, J., D. Kim, W. J. Lee, and J. I. Choi, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microwave and Optical Tech. Lett., Vol. 51, No. 8, 1973-1976, 2009.
doi:10.1002/mop.24469

23. Temelkuaran, B., M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K.M. Ho, "Photonic crystal-based resonant antenna with a very high directivity," Journal of Applied Physics, Vol. 87, 603-605, 2000.
doi:10.1063/1.371905

24. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1632-1643, June 2006.
doi:10.1109/TAP.2006.875470

25. Tang, M., S. Xiao, D.Wang, J. Xiong, K. Chen, and B.Wang, "Negative index of reflection in planar metamaterial composed of single split-ring resonators," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 26, No. 3, 250-258, March 2011.

26. Averitt, R. D., W. J. Padilla, H. T. Chen, J. F. O’Hara, A. J. Taylor, C. Highstrete, and A. C. Gossard, "Terahertz metamaterial devices," Optics East 2007 (677209-677209), International Society for Optics and Photonics, September 2007.

27. Maritz, A. J. N., "Investigation and design of a slotted waveguide antenna with low 3D sidelobes,", Doctoral dissertation, Stellenbosch University, 2010.

28. Mahmud, R., T. He, M. Lancaster, Y.Wang, and X. Shang, "Micromachined travelling wave slotted waveguide antenna array for beam-scanning applications,", 2014.

29. Li, Y., I. Mehdi, A. Maestrini, R. H. Lin, and J. Papapolymerou, "A broadband 900-GHz silicon micromachined two-anode frequency tripler," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 6, 1673-1681, 2011.
doi:10.1109/TMTT.2011.2130534

30. Grabowski, M., "Non-Resonant Slotted Waveguide Antenna Design Method," High Frequency Electronics, 2012.

31. Chen, X., T. Grzegorczyk, B. Wu, J. Pacheco, and J. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 2004.

32. Arslanagic, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, 2013.
doi:10.1109/MAP.2013.6529320

33. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by timedomain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

34. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/22.552032

35. Campione, S., S. Steshenko, M. Albani, and F. Capolino, "Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres," Optics Express, Vol. 19, No. 27, 26027-26043, 2011.
doi:10.1364/OE.19.026027

36. Carrasco, E., M. Barba, and J. Encinar, "X-band reflectarray antenna with switching-beam using pin diodes and gathered elements," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5700-5708, 2012.
doi:10.1109/TAP.2012.2208612

37. Vallecchi, A. and G. B. Gentili, "A shaped-beam hybrid coupling microstrip planar array antenna for X-band dual polarization airport surveillance radars," The Second European Conf. on Antennas and Propagation, 2007, EuCAP 2007, 1-7, November 2007.

38. Kuo, F. Y. and R. B. Hwang, "High-isolation X-band marine radar antenna design," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2331-2337, 2014.
doi:10.1109/TAP.2014.2307296

39. Jung, E. Y., J. W. Lee, T. K. Lee, et al. "SIW-based array antennas with sequential feeding for X-band satellite communication," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3632-3639, 2012.
doi:10.1109/TAP.2012.2201075

40. Kurzweil-Segev, Y., M. Brodsky, A. Polsman, E. Safrai, Y. Feldman, S. Einav, and P. Ben Ishai, "Remote monitoring of phasic heart rate changes from the palm," IEEE Transactions on Terahertz Science and Technology, Vol. 4, No. 5, 618-623, 2014.
doi:10.1109/TTHZ.2014.2330196

41. Sun, M., Z. N. Chen, H. Tanoto, Q. Y. Wu, J. H. Teng, and S. B. Yeap, "Design of continuouswave photomixer driven terahertz dipole lens antennas," APSIPA Annual Summit and Conference, 14-17, December 2010.