Vol. 71
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-02-27
Compact Dual-Mode Microstrip Bandpass Filters with Transmission Zeros Using Modified Star Shaped Resonator
By
Progress In Electromagnetics Research C, Vol. 71, 177-187, 2017
Abstract
A modified star-shaped dual-mode microstrip loop resonator with a triangular patch is proposed to design compact narrow band bandpass filters with transmission zeros. The triangular patch is used as perturbation element to couple degenerated modes. The position of transmission zeros can be tuned by varying the size and location of the perturbation element. The coupling mechanism (inductive or capacitive) and the type of input/output feed (orthogonal or non-orthogonal) determine the type of filter response like symmetric or asymmetric. Three highly selective two-pole narrow band bandpass filters are designed using a modified star-shaped resonator with tunable transmission zeros. First, two filters with non-orthogonal feed lines have an asymmetric response with transmission zeros on one side of the passband, whereas the third filter with orthogonal feed lines exhibits symmetric frequency response with transmission zeros on both sides of the passband. Even and odd mode analysis is applied to the dual mode filters to calculate the position of transmission zeros. Filters are realized using a low loss dielectric substrate, and measured results are in good agreement with the theoretical and simulated ones.
Citation
Kenganahalli Gowdra Avinash, and Inabathini Srinivasa Rao, "Compact Dual-Mode Microstrip Bandpass Filters with Transmission Zeros Using Modified Star Shaped Resonator," Progress In Electromagnetics Research C, Vol. 71, 177-187, 2017.
doi:10.2528/PIERC16122801
References

1. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619

2. Hong, J. S. and M. J. Lancaster, "Microstrip cross-coupled trisection bandpass filters with a symmetric frequency characteristics," IEE Proc. Microwave, Antennas Propag., Vol. 146, No. 1, 84-90, 1999.
doi:10.1049/ip-map:19990146

3. Wolf, I., "Microstrip bandpass filter using degenerate modes of a microstrip ring resonator," Electron. Lett., Vol. 8, No. 12, 302-303, 1972.
doi:10.1049/el:19720223

4. Hong, J. S. and M. J. Lancaster, "Bandpass characteristics of new dualmode microstrip square loop resonators," Electron. Lett., Vol. 31, No. 11, 891-892, 1995.
doi:10.1049/el:19950591

5. Lugo, C. and J. Papapolymerou, "Bandpass filter design using a microstrip triangular loop resonator with dual-mode operation," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 7, 475-477, 2005.
doi:10.1109/LMWC.2005.851573

6. Wu, R. and S. Amari, "New triangular microstrip loop resonators forbandpass dual-mode filter applications," IEEE MTT-S Int. Microwave Symp. Dig., 941-944, 2005.

7. Mansour, R. R., "Design of superconductive multiplexers using single-mode and dual-mode filters," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 7, 1411-1418, 1994.
doi:10.1109/22.299738

8. Hong, J. S. and M. J. Lancaster, "Microstrip triangular patch resonator filters," IEEE MTT-S Dig., 331-334, 2000.

9. Hong, J. S. and S. Li, "Theory and experiment of dual-mode microstriptriangular patch resonators and filters," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1237-1243, 2004.
doi:10.1109/TMTT.2004.825653

10. Avinash, K. G. and I. S. Rao, "Design of bandpass filter using star loop dual mode resonator," 2015 IEEE International Conference on Communications and Signal Processing (ICCSP), 0238-0241, Melmaruvathur, 2015.

11. Gorur, A., "Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 2, 671-677, 2004.
doi:10.1109/TMTT.2003.822033

12. Eryilmaz, G. M., C. Karpuz, and A. Gorur, "Dual-mode microstrip filters with adjustable transmission zeros," IET Microw. Antennas Propag., Vol. 2, No. 8, 839-847, 2008.
doi:10.1049/iet-map:20070360

13. Rouchaud, F., V. Madrangeas, M. Aubourg, P. Guillon, B. Theron, and M. Maignan, "New classes of microstrip resonators for HTS microwave filters applications," IEEE MTT-S Dig., 1023-1026, 1998.

14. Hsieh, L. H. and K. Chang, "Dual-mode quasi-elliptic-function bandpass filters using ring resonators with enhanced coupling tuning stubs," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 5, 1340-1345, 2002.
doi:10.1109/22.999148

15. Wang, J., J. L. Li, J. Ni, S. Zhao, W. Wu, and D. Fang, "Design of miniaturized microstrip dualmode filter with source-load coupling," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 6, 319-321, 2010.
doi:10.1109/LMWC.2010.2047472

16. Wang, J., J. Ni, J. B. Pan, L. Ge, and X. Y. Guo, "Design of a miniaturized microstrip dual-mode dual-band bandpass filter," Microwave and Optical Tech. Lett., Vol. 53, No. 11, 1493-1496, 2011.
doi:10.1002/mop.26056

17. Gorur, A. K., C. Karpuz, A. Ozek, P. O. Ozdemir, and K. Karaca, "A novel compact microstrip dual-mode wideband bandpass filter design using tuning stubs," Microwave and Optical Tech. Lett., Vol. 56, No. 1, 47-49, 2014.
doi:10.1002/mop.28078

18. Cheng, K. K. M., "Design of dual-mode ring resonators with transmission zeros," Electron. Lett., Vol. 33, No. 16, 1392-1393, 1997.
doi:10.1049/el:19970947

19. Mao, R. J. and X. H. Tang, "Novel dual-mode bandpass filters using hexagonal resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 9, 3526-3553, 2006.
doi:10.1109/TMTT.2006.881025

20. Esfeh, B. K., A. Ismail, R. S. A. Raja Abdullah, H. Adam, and A. R. H. Alahwari, "Compact narrowband bandpass filter using dual-mode octagonal meandered loop resonator for WiMAX application," Progress In Electromagnetics Research B, Vol. 16, 277-290, 2009.
doi:10.2528/PIERB09061601