Vol. 72
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-02-27
A Miniaturized Volkswagen Logo UWB Antenna with Slotted Ground Structure and Metamaterial for GPS, WiMAX and WLAN Applications
By
Progress In Electromagnetics Research C, Vol. 72, 29-41, 2017
Abstract
A novel concept of using slotted ground structure and a single circular split ring resonator (SRR) to achieve multiband operation from a miniaturized UWB antenna is presented in this paper. Initially a miniaturized volkswagen logo ultawideband (UWB) antenna having -10 dB impedance bandwidth of about 124% (2.9-12.4 GHz) in simulation and 116.7% (3.1-11.8 GHz) under measurement is designed. This miniaturization leads to about 10% increment in -10 dB reflection coefficient bandwidth and about 66.71% reduction in volume of the proposed UWB antenna as compared to the conventional circular antenna. In order to reconfigure the proposed UWB antenna to operate it at 1.5 (GPS), 3.5 (WiMAX), 5.2 and 5.8 GHz (WLAN) frequency bands, slotted ground structure with metamaterial is used. The proposed metamaterial is a circular split ring resonator (SRR) consisting of single circular ring and is placed on the slotted ground structure of the proposed antenna to achieve 1.5 GHz band. The proposed configuration has a volume of 0.290λ0×0.290λ0×0.015λ0 (30×30×1.6 mm3) at lower resonating band of 2.9 GHz and is fabricated on a widely available FR4 substrate with a loss tangent of 0.02 and dielectric constant of 4.4. Simulated and experimental results shows that the proposed design yields S11<-10 dB at the targeted frequencies. Good impedance matching, stable radiation characteristics with cross-polarization level less than -15 dB (both in E and H planes), VSWR<2, average gain of 3.09 dBi and radiation efficiency of more than 85% are observed at the designed band when the antenna is fabricated and tested.
Citation
Tanweer Ali, and Rajashekhar Chandrashekhar Biradar, "A Miniaturized Volkswagen Logo UWB Antenna with Slotted Ground Structure and Metamaterial for GPS, WiMAX and WLAN Applications," Progress In Electromagnetics Research C, Vol. 72, 29-41, 2017.
doi:10.2528/PIERC16120109
References

1. Tang, M. C., H. Wang, T. Deng, and R. W. Ziolkowski, "Compact planar ultra-wideband antennas with continuously tunable independent band-notched filters," IEEE Trans. on Antennas and Propag., Vol. 64, No. 8, 3292-3301, 2016.
doi:10.1109/TAP.2016.2570254

2. Tang, M. C., T. Shi, and R. W. Ziolkowski, "Planar ultrawideband antennas with improved realized gain performance," IEEE Trans. on Antennas and Propag., Vol. 64, No. 1, 61-69, 2016.
doi:10.1109/TAP.2015.2503732

3. Kumar, M., A. Basu, and S. K. Koul, "UWB printed slot antenna with improved performance in time and frequency domains," Progress In Electromagnetics Research C, Vol. 18, 197-210, 2011.
doi:10.2528/PIERC10090904

4. Dang, L., Z. Y. Lei, Y. J. Xie, G. L. Ning, and J. Fan, "A compact microstrip slot triple-band antenna for WLAN/WiMAX applications," IEEE Antennas and Wirel. Propag. Lett., Vol. 9, 1178-1181, 2010.
doi:10.1109/LAWP.2010.2098433

5. Baek, S. and Y. Jee, "Compact integrated monopole antenna with CPW-fed meander resonators," Electron. Lett., Vol. 47, No. 2, 79-80, 2011.
doi:10.1049/el.2010.2952

6. Liu, P., Y. Zou, B. Xie, X. Liu, and B. Sun, "Compact CPW-fed tri-band printed antenna with meandering split-ring slot for WLAN/WiMAX applications," IEEE Antennas and Wirel. Propag. Lett., Vol. 11, 1242-1244, 2012.

7. Peyrot-Solis, M. A., J. A. Tirado-Mendez, and H. Jardon-Aguilar, "Design of multiband UWB planarized monopole using DMS technique," IEEE Antennas and Wirel. Propag. Lett., Vol. 6, 77-79, 2007.
doi:10.1109/LAWP.2007.893065

8. Zulkifli, F. Y., E. T. Rahardjo, and D. Hartanto, "Mutual coupling reduction using dumbbell defected ground structure for multiband microstrip antenna array," Progress In Electromagnetics Research Letters, Vol. 13, 29-40, 2010.
doi:10.2528/PIERL09102902

9. Risco, S., J. Anguera, A. Andujar, A. Perez, and C. Puente, "Coupled monopole antenna design for multiband handset devices," Microw. Opt. Technol. Lett., Vol. 52, No. 2, 359-364, 2008.
doi:10.1002/mop.24893

10. Richards, W. F., S. E. Davidson, and S. A. Long, "Dual band, Reactively loaded microstrip antenna," IEEE Trans. on Antennas and Propag., Vol. 33, 556-561, 1985.
doi:10.1109/TAP.1985.1143617

11. Puente, C., J. Anguera, C. Borja, and J. Soler, "Fractal-Shaped antennas and their application to GSM 900/1800,", Vol. 2, 2001.

12. Jayasinghe, J. W., J. Anguera, and D. N. Uduwawala, "A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMTS, LTE, and Bluetooth applications by using genetic algorithm optimization," Progress In Electromagnetics Research M, Vol. 27, 255-269, 2012.
doi:10.2528/PIERM12102705

13. Hongnara, T., C. Mahattanajatuphat, P. Akkaraekthalin, and M. Krairiksh, "A multiband CPWfed slot antenna with fractal stub and parasitic line," Radioengineering, Vol. 21, No. 2, 597-605, 2012.

14. Zhang, S. M., F. S. Zhang, W. M. Li, W. Z. Li, and H. Y. Wu, "A multi-band monopole antenna with two different slots for WLAN and WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 28, 173-181, 2012.
doi:10.2528/PIER12020704

15. Elsheakh, D. M. and E. A. Abdallah, "Compact multiband multifolded-slot antenna loaded with printed-IFA," IEEE Antennas and Wirel. Propag. Lett., Vol. 11, 1478-1481, 2012.
doi:10.1109/LAWP.2012.2232273

16. Su, S. W., "Compact four loop antenna system for concurrent, 2.4 and 5GHz WLAN operation," Microw. Opt. Techon. Lett., Vol. 56, No. 1, 208-215, 2014.
doi:10.1002/mop.28020

17. Huang, C.-Y. and E.-Z. Yu, "A slot-monopole antenna for dual-band WLAN applications," IEEE Antennas and Wirel. Propag. Lett., Vol. 10, 500-502, 2011.
doi:10.1109/LAWP.2011.2156755

18. Chien, H. Y. and C. H. Lee, "Dual-band meander monopole antenna for WLAN operation in laptop computer," IEEE Antennas and Wirel. Propag. Lett., Vol. 12, 694-697, 2013.
doi:10.1109/LAWP.2013.2263373

19. Ghatak, R., R. K. Mishra, and D. R. Poddar, "Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802.11 a/b WLAN application," IEEE Antennas and Wirel. Propag. Lett., Vol. 7, 742-744, 2008.
doi:10.1109/LAWP.2008.2004815

20. Rao, Q. and W. Geyi, "Compact multiband antenna for handheld devices," IEEE Trans. on Antennas and Propag., Vol. 57, No. 10, 3337-3339, 2009.
doi:10.1109/TAP.2009.2029384

21. Balanis, C. A., Antenna Theory Analysis and Design, Wiley Publication, 2005.

22. Pandeeswari, R. and S. Raghavan, "A CPW fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WIMAX applications," Microw. and Opt. Techn. Lett., Vol. 57, No. 10, 2413-2418, 2015.
doi:10.1002/mop.29352

23. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by timedomain techniques," IEEE Trans. on Instr. and Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

24. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104–9, 2002.

25. Chen, H., J. Zhang, Y. Bai, Y. Luo, L. Ran, and Q. Jiang, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Opt. Express, Vol. 14, No. 26, 12944-12949, 2006.
doi:10.1364/OE.14.012944

26. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from in homogeneous metamaterials," Phys. Rev. B, Vol. 71, 36617–27, 2005.

27. Lu, J. H. and B. J. Huang, "Planar compact slot antenna with multiband operation for IEEE 802.16 m application," IEEE Trans. on Antennas and Propag., Vol. 61, No. 3, 1411-1414, 2013.
doi:10.1109/TAP.2012.2227440

28. Dang, L., Z. Y. Lei, Y. J. Xie, G. L. Ning, and J. Fan, "A compact microstrip slot triple-band antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1178-1181, 2010.
doi:10.1109/LAWP.2010.2098433

29. Hu, W., Y. Z. Yin, P. Fei, and X. Yang, "Compact triband square-slot antenna with symmetrical LStrips for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 10, 462-465, 2011.
doi:10.1109/LAWP.2011.2154372

30. Lee, Y.-C. and J.-S. Sun, "Compact printed slot antennas for wireless dual and multiband operation," Progress In Electromagnetics Research, Vol. 88, 289-305, 2008.
doi:10.2528/PIER08111902

31. Cao, Y. F., S. W. Cheung, and T. I. Yuk, "A multiband slot antenna for GPS/WiMAX/WLAN applications," IEEE Trans. on Antennas and Propag., Vol. 63, No. 3, 952-958, 2015.
doi:10.1109/TAP.2015.2389219